Skip to main content

An Introduction to the Pathogenetic Mechanisms of CoViD19 Complications

  • Chapter
  • First Online:
Book cover Cardiovascular Complications of COVID-19
  • 526 Accesses

Abstract

The spread of pulmonary disease, sepsis, and the development of multi-organ failure, reflect serious complications of the CoViD19 and significantly contribute towards the burden of critical disease and mortality. A combination of the viral, immune and regulatory mechanisms drives a myriad of pathogenetic interactions that promote the development of these complications. The inflammatory, immune, and several other processes that facilitate injury to the pulmonary, vascular, and different structures have significant hemodynamic, hemostatic, metabolic implications that need to be better recognized. In this chapter, we examine the prominent characteristics of the key CoViD19 complications and multiple critical pathogenetic mechanisms that promote their development and also give a brief description of the essential mechanisms such as the renin-angiotensin system, cytokines, and several others. The analysis of the pathogenetic mechanisms associated with the potentially lethal complications of SARS CoV2 provides an insight into the clinical, biochemical, and hematological manifestations of the disease and is fundamental for a greater understanding of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Special Expert Group for Control of the Epidemic of Novel Coronavirus Pneumonia of the Chinese Preventive Medicine Association. An update on the epidemiological characteristics of novel coronavirus pneumonia (COVID-19). Chin J Epidemiol. 2020;41.

    Google Scholar 

  2. Force* TADT. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA. 2012; 307(23):2526–33.

    Google Scholar 

  3. Force ADT, Ranieri VM, Rubenfeld GD, Thompson B, Ferguson N, Caldwell E. Acute respiratory distress syndrome. JAMA. 2012;307(23):2526–33.

    Google Scholar 

  4. Durbin RK, Kotenko SV, Durbin JE. Interferon induction and function at the mucosal surface. Immunol Rev. 2013;255(1):25–39.

    Article  Google Scholar 

  5. Pothlichet J, Meunier I, Davis BK, Ting JP, Skamene E, von Messling V, Vidal SM. Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells. PLoS Pathog. 2013; 9(4):e1003256.

    Google Scholar 

  6. Acosta MAT. Singer BD. Pathogenesis of COVID-19-induced ARDS: implications for an ageing population. Eur Resp J. 2020; 56(3).

    Google Scholar 

  7. Buonaguro FM, Puzanov I, Ascierto PA. Anti-IL6R role in treatment of COVID-19-related ARDS. 2020.

    Google Scholar 

  8. Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H, Tang H, Nishiura K, Peng J, Tan Z, Wu T. Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 2019; 4(4).

    Google Scholar 

  9. Li JY, Liao CH, Wang Q, Tan YJ, Luo R, Qiu Y, Ge XY. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Res. 2020; 286:198074.

    Google Scholar 

  10. Lokugamage KG, Hage A, Schindewolf C, Rajsbaum R, Menachery VD. SARS-CoV-2 is sensitive to type I interferon pretreatment. BioRxiv. 2020.

    Google Scholar 

  11. Broggi A, Ghosh S, Sposito B, Spreafico R, Balzarini F, Cascio AL, Clementi N, De Santis M, Mancini N, Granucci F, Zanoni I. Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science. 2020;369(6504):706–12.

    Article  CAS  Google Scholar 

  12. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005, August; 11(8):875–9. doi:https://doi.org/10.1038/nm1267. PMID 16007097.

  13. Angiotensin-converting enzyme 2 in lung diseases, Keiji Kuba, Yumiko Imai, Josef M Penninger Current Opinion in Pharmacology. 2006, June; 6(3):271–6.

    Google Scholar 

  14. Zhang H, Baker A. Recombinant human ACE2: acing out angiotensin II in ARDS therapy. Crit Care. 2017;21:305.

    Article  Google Scholar 

  15. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, Wang Z, Li J, Li J, Feng C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020. https://doi.org/10.1007/s11427-020-1643-8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005; 436:112–116. [CrossRef] [PubMed].

    Google Scholar 

  17. Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63:364–74.

    Article  CAS  Google Scholar 

  18. Boldt J, Papsdorf M, Kumle B. Influence of angiotensin-converting enzyme inhibitor enalaprilat on endothelial-derived substances in the critically ill. Crit Care Med. 1998;26:1663–70.

    Article  CAS  Google Scholar 

  19. Pastore L, Tessitore A, Martinotti S. Angiotensin II stimulates intercellular adhesion molecule-1 (ICAM-1) expression by human vascular endothelial cells and increases soluble ICAM-1 release in vivo. Circulation. 1999;100:1646–52.

    Article  CAS  Google Scholar 

  20. Dielis AW, Smid M, Spronk HM. Changes in fibrinolytic activity after angiotensin II receptor blockade in therapy-resistant hypertensive patients. J Thromb Haemost. 2007;5:1509–15.

    Article  CAS  Google Scholar 

  21. Miyoshi M, Nagata K, Imoto T. ANG II is involved in the LPS-induced production of proinflammatory cytokines in dehydrated rats. Am J Physiol Regul Integr Comp Physiol. 2003;284:R1092–7.

    Article  CAS  Google Scholar 

  22. Ruiz-Ortega M, Ruperez M, Lorenzo O. Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney. Kidney Int Suppl. 2002;62:S12-22.

    Article  Google Scholar 

  23. Higuchi S, Ohtsu H, Suzuki H. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond). 2007;112:417–28.

    Article  CAS  Google Scholar 

  24. Lund DD, Brooks RM, Faraci FM, Heistad DD. Role of angiotensin II in endothelial dysfunction induced by lipopolysaccharide in mice. Am J Physiol Heart Circ Physiol. 2007;293:H3726–31.

    Article  CAS  Google Scholar 

  25. Marshall RP, Webb S, Bellingan GJ, Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002; 166:646–50. [Google Scholar].

    Google Scholar 

  26. Yao S, Feng D, Wu Q. Losartan attenuates ventilator-induced lung injury. J Surg Res. 2008;145:25–32.

    Article  CAS  Google Scholar 

  27. Jia H. Pulmonary angiotensin-converting enzyme 2 (ACE2XE “ACE2”) and inflammatory lung disease. Shock. 2016;46(3):239–48.

    Article  CAS  Google Scholar 

  28. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, Crackower MA, Fukamizu A, Hui CC, Hein L, Uhlig S, Slutsky AS, Jiang C, Penninger JM. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112–6.

    Article  CAS  Google Scholar 

  29. Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M, Penninger J, Krähenbühl S. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 2013; 52:783–792. ClinicalTrials.gov identifier NCT01597635.

    Google Scholar 

  30. Malaquias MAS, Gadotti AC, da Silva Motta-Junior J, Martins APC, Azevedo MLV, Benevides APK, Cézar-Neto P, do Carmo LAP, Zeni RC, Raboni SM, Fonseca AS. The role of the lectin pathway of the complement system in SARS-CoV-2 lung injury. Trans Res. 2021; 231:55–63.

    Google Scholar 

  31. Toldo S, Bussani R, Nuzzi V, Bonaventura A, Mauro AG, Cannatà A, Pillappa R, Sinagra G, Nana-Sinkam P, Sime P, Abbate A. Inflammasome formation in the lungs of patients with fatal COVID-19. Inflam Res. 2021; 70(1):7–10.

    Google Scholar 

  32. Cardiac dysfunction in severe sepsis and septic shock. Zanotti-Cavazzoni SL, Hollenberg SM. Curr Opin Crit Care. 2009;15(5):392–7.

    Google Scholar 

  33. Diastolic dysfunction and mortality in severe sepsis and septic shock. Landesberg G, Gilon D, Meroz Y, Georgieva M, Levin PD, Goodman S, Avidan A, Beeri R, Weissman C, Jaffe AS, Sprung CL. Eur Heart J. 2012;33(7):895–903.

    Google Scholar 

  34. Li Y, Xiao SY. Hepatic involvement in COVID-19 patients: Pathology, pathogenesis, and clinical implications. J Med Virol. 2020;92(9):1491–4.

    Article  CAS  Google Scholar 

  35. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–9.

    Article  CAS  Google Scholar 

  36. Jin X, Lian JS, Hu JH, Gao J, Zheng L, Zhang YM, Hao SR, Jia HY, Cai H, Zhang XL, Yu GD. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020;69(6):1002–9.

    Article  CAS  Google Scholar 

  37. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, Nigoghossian CD, Ageno W, Madjid M, Guo Y, Tang LV. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(23):2950–73.

    Article  CAS  Google Scholar 

  38. Nilsson A, Edner N, Albert J, Ternhag A. Fatal encephalitis associated with coronavirus OC43 in an immunocompromised child. Infect Dis. 2020;52(6):419–22.

    Article  Google Scholar 

  39. Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res. 2008;102:488–96.

    Article  CAS  Google Scholar 

  40. The stress response and critical illness: a review. Cuesta JM, Singer M Crit Care Med. 2012 Dec; 40(12):3283–9.

    Google Scholar 

  41. The endocrine response to critical illness. Rolih CA, Ober KP. Med Clin North Am. 1995;79(1):211–24.

    Google Scholar 

  42. Thornton P, McColl BW, Greenhalgh A, Denes A, Allan SM, Rothwell NJ. Platelet interleukin-1alpha drives cerebrovascular inflammation. Blood. 2010;115:3632–9.

    Article  CAS  Google Scholar 

  43. Yang L, Tu L. Implications of gastrointestinal manifestations of COVID-19. Lancet Gastroent Hepat. 2020;5(7):629–30.

    Article  Google Scholar 

  44. Ellul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A, Kneen R, Defres S, Sejvar J, Solomon T. Neurological associations of COVID-19. Lancet Neurol. 2020.

    Google Scholar 

  45. Renin-angiotensin system activation correlates with microvascular dysfunction in a prospective cohort study of clinical sepsis. Doerschug KC, Delsing AS, Schmidt GA, Ashare A Crit Care. 2010; 14(1):R24.

    Google Scholar 

  46. Boldt J, Papsdorf M, Kumle B et al. Influence of angiotensin-converting enzyme inhibitor enalaprilat on endothelial-derived substances in the critically ill. Crit Care Med. 1998; 26:1663–70.

    Google Scholar 

  47. Bucher M, Hobbhahn J, Kurtz A. Nitric oxide-dependent down-regulation of angiotensin II type 2 receptors during experimental sepsis. Crit Care Med. 2001;29:1750–5.

    Article  CAS  Google Scholar 

  48. Dong LW, Chang YZ, Tong LJ, et al. Role of regulatory peptide in pathogenesis of shock. Sci China B. 1994;37:162–9.

    CAS  PubMed  Google Scholar 

  49. Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res. 2008; 102:488–96.

    Google Scholar 

  50. Wray GM, Coakley JH. Severe septic shock unresponsive to noradrenaline. Lancet. 1995;346:1604.

    Article  CAS  Google Scholar 

  51. Boldt J, Papsdorf M, Kumle B, Influence of angiotensin-converting enzyme inhibitor enalaprilat on endothelial-derived substances in the critically ill. Crit Care Med. 1998; 26:1663–70.

    Google Scholar 

  52. Adembri C, Kastamoniti E, Bertolozzi I. Pulmonary injury follows systemic inflammatory reaction in infrarenal aortic surgery. Crit Care Med. 2004;32:1170–7.

    Article  Google Scholar 

  53. Namsolleck et al. Namsolleck P, Recarti C, Foulquier S, Steckelings UM, Unger T. AT(2) receptor and tissue injury: therapeutic implications. Curr Hypertens Rep. 2014; 16:416.

    Google Scholar 

  54. Steckelings et al. Steckelings UM, Kloet A, Sumners C. Centrally mediated cardiovascular actions of the angiotensin II type 2 receptor. Trends Endocrinol Metab. 2017; 28:684–93.

    Google Scholar 

  55. Hansen TH, Bouvier M. MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol. 2009; 9(7):503e513.

    Google Scholar 

  56. Goulder PJ, Watkins DI. Impact of MHC class I diversity on immune control of immunodeficiency virus replication. Nat Rev Immunol. 2008; 8(8):619e630.

    Google Scholar 

  57. Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 2020 Mar 18. pii:S0006–291X(20)30523–4. doi: https://doi.org/10.1016/j.bbrc.2020.03.044. [Epub ahead of print].

  58. Roth J, De Souza GE. Fever induction pathways: evidence from responses to systemic or local cytokine formation. Braz J Med Biol Res. 2001;34:301–14.

    Article  CAS  Google Scholar 

  59. Yeager ME, Belchenko DD, Nguyen CM, et al. Endothelin-1, the unfolded protein response, and persistent inflammation: role of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol. 2012;46:14–22.

    Article  CAS  Google Scholar 

  60. Virdis A, Schiffrin EL. Vascular inflammation: a role in vascular disease in hypertension? Curr Opin Nephrol Hypertens. 2003;12:181–7.

    Article  CAS  Google Scholar 

  61. Zhang H, Li Y, Zeng Y, Wu R, Ou J. Endothelin-1 downregulates angiotensin-converting enzyme-2 expression in human bronchial epithelial cells. Pharmacology. 2013;91(5–6):297–304.

    Article  CAS  Google Scholar 

  62. Yusuf H, Montezano AC, Callera GE, Nguyen Dinh Cat A, Santos RA, Castro CH, Touyz RM. Angiotensin 1–7 attenuates endothelin-1-induced endothelial cell inflammation and growth through nitric oxide production and activation of Mas and endothelinB receptors. 2012.

    Google Scholar 

  63. Wang H, Ma S. The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am J Em Med. 2008; 26(6):711–5. PubMed PMID: 18606328. Eng.

    Google Scholar 

  64. Special Expert Group for Control of the Epidemic of Novel Coronavirus Pneumonia of the Chinese Preventive Medicine Association. An update on the epidemiological characteristics of novel coronavirus pneumonia (COVID-19. Chin J Epidemiol. 2020; 41.

    Google Scholar 

  65. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497–506.

    Article  CAS  Google Scholar 

  66. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19(2):181–93 PubMed PMID: 26867177.

    Article  CAS  Google Scholar 

  67. Herold S, Steinmueller M, von Wulffen W, Cakarova L, Pinto R, Pleschka S, et al. Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand. J Exper Med. 2008; 205(13):3065–77. PubMed PMID: 19064696. Epub 2008/12/08.40.

    Google Scholar 

  68. Högner K, Wolff T, Pleschka S, Plog S, Gruber AD, Kalinke U, et al. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLoS Pathogens. 2013; 9(2):e1003188-e. PubMed PMID: 23468627. Epub 2013/02/28.41.

    Google Scholar 

  69. Rodrigue-Gervais IG, Labbé K, Dagenais M, Dupaul-Chicoine J, Champagne C, Morizot A, et al. Cellular inhibitor of apoptosis protein cIAP2 protects against pulmonary tissue necrosis during influenza virus infection to promote host survival. Cell Host Microbe. 2014;15(1):23–35 PubMed PMID: 24439895.

    Article  CAS  Google Scholar 

  70. Violi F, Oliva A, Cangemi R, Ceccarelli G, Pignatelli P, Carnevale R, Cammisotto V, Lichtner M, Alessandri F, De Angelis M, Miele MC. Nox2 activation in Covid-19. Redox Biol. 2020; 36:101655.

    Google Scholar 

  71. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355–62.

    Article  CAS  Google Scholar 

  72. Derouiche S. Oxidative stress associated with SARS-Cov-2 (COVID-19) increases the severity of the lung disease-a systematic review. J Infect Dis Epidemiol. 2020;6:121.

    Google Scholar 

  73. Nagar H, Piao S, Kim CS. Role of mitochondrial oxidative stress in sepsis. Acute Critical Care. 2018;33(2):65.

    Article  Google Scholar 

  74. Galley HF. Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth. 2011;107(1):57–64.

    Article  CAS  Google Scholar 

  75. Li S, Jiang L, Li X, Lin F, Wang Y, Li B, Jiang T, An W, Liu S, Liu H, Xu P. Clinical and pathological investigation of patients with severe COVID-19. JCI Insight. 2020; 5(12).

    Google Scholar 

  76. Yang M. Cell pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. Available at SSRN 3527420. 2020.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umair Mallick .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mallick, U. (2022). An Introduction to the Pathogenetic Mechanisms of CoViD19 Complications. In: Cardiovascular Complications of COVID-19. Springer, Cham. https://doi.org/10.1007/978-3-030-90065-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90065-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90064-9

  • Online ISBN: 978-3-030-90065-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics