Skip to main content

Production of Safer Vegetables from Heavy Metals Contaminated Soils: The Current Situation, Concerns Associated with Human Health and Novel Management Strategies

  • Chapter
  • First Online:
Advances in Bioremediation and Phytoremediation for Sustainable Soil Management

Abstract

Vegetables play a chief part in the human diet and provide the essential nutrients and vitamins necessary to perform numerous essential physiological functions in the human body. Unfortunately, the consumption of vegetables laden with heavy metals (HMs) is among the most imperative issues of recent years because of their toxic impacts on human health. The toxic HMs accumulated in vegetables after their release into the ecosystem through diverse natural and human-centered activities. The prolonged use of synthetic agrochemicals, irrigation of agricultural lands with untreated municipal and industrial effluents, inappropriate dumping of solid waste, and various other industrial activities are the main causative factors of HMs accumulation in productive soils. The mobility of HMs in the soil and their accumulation in vegetables is remarkably influenced by several soil and plant factors that control their bioavailability. Reduction in growth, biomass, yield and poor nutritional quality are the key symptoms of HMs toxicity after their absorption by the vegetables. Health risks to humans via the consumption of HMs contaminated vegetables have been investigated through different risk assessment equations. Interestingly, different novel remediation techniques such as phytoremediation, immobilization, water management strategies, and applications of microbial inocula could be practiced for safer vegetable production for human consumption from HMs polluted soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 31 January 2022

    The original version of the book was inadvertently published with incorrect affiliations in chapter 19 for the authors Veysel Turan and Muhammad Iqbal. Corrections to the Previously Published Version have been updated.

References

  • Agrawal SB, Singh A, Sharma RK, Agrawal M (2007) Bioaccumulation of heavy metals in vegetables: a threat to human health. Terr Aquat Environ Toxicol 1:13–23

    Google Scholar 

  • Akan JC, Kolo BG, Yikala BS, Ogugbuaja VO (2013) Determination of some heavy metals in vegetable samples from Biu local government area, Borno State, North Eastern Nigeria. Int J Environ Monit Anal 1:40–46

    CAS  Google Scholar 

  • Alexander PD, Alloway BJ, Dourado AM (2006) Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environ Pollut 144:736–745

    Article  CAS  PubMed  Google Scholar 

  • Alghobar MA, Suresha S (2017) Evaluation of metal accumulation in soil and tomatoes irrigated with sewage water from Mysore city, Karnataka, India. J Saudi Soc Agric Sci 16:49–59

    Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  • Anarado CE, Anarado CJO, Okeke MO, Ezeh CE, Umedum NL, Okafor PC (2019) Leafy vegetables as potential pathways to heavy metal hazards. J Agric Chem Environ 8:23

    CAS  Google Scholar 

  • Arshad M, Ali S, Noman A, Ali Q, Rizwan M, Farid M, Irshad MK (2016) Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants, and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Arch Agron Soil Sci 62:533–546

    Article  CAS  Google Scholar 

  • Asgari K, Cornelis WM (2015) Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation. Environ Monit Assess 187:410

    Article  PubMed  Google Scholar 

  • Awad GE, Wehaidy HR, Abd El Aty AA, Hassan ME (2017) A novel alginate–CMC gel beads for efficient covalent inulinase immobilization. Colloid Polym Sci 295:495–506

    Article  CAS  Google Scholar 

  • Balkhair KS, Ashraf MA (2016) Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J Biol Sci 23:32–44

    Article  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    Article  CAS  PubMed  Google Scholar 

  • Cao S, Duan X, Zhao X, Ma J, Dong T, Huang N, Wei F (2014) Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Sci Total Environ 472:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Chabukdhara M, Munjal A, Nema AK, Gupta SK, Kaushal RK (2016) Heavy metal contamination in vegetables grown around peri-urban and urban-industrial clusters in Ghaziabad, India. Hum Ecol Risk Assess Int J 22(3):736–752

    Article  CAS  Google Scholar 

  • Chang Q, Diao FW, Wang QF, Pan L, Dang ZH, Guo W (2018) Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Environ Pollut 241:607–615

    Article  CAS  PubMed  Google Scholar 

  • Chary NS, Kamala CT, Raj DSS (2008) Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotox Environ Safe 69(3):513–524

    Article  CAS  Google Scholar 

  • Chauhan G, Chauhan UK (2014) Human health risk assessment of heavy metals via dietary intake of vegetables grown in wastewater irrigated area of Rewa, India. Int J Sci Res Publ 4(9):1–9

    Google Scholar 

  • Chaves LHG, Estrela MA, de Souza RS (2011) Effect on plant growth and heavy metal accumulation by sunflower. J Phytol 3(12)

    Google Scholar 

  • Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL, Wong MH (2003) The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50(6):807–811

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wu P, Shao Y, Ying Y (2014) Health risk assessment of heavy metals in vegetables grown around battery production area. Sci Agric 71:126–132

    Article  CAS  Google Scholar 

  • Chen M, Xu P, Zeng G, Yang C, Huang D, Zhang J (2015) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv 33(6):745–755

    Article  CAS  PubMed  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biol Med 48(6):749–762

    Article  CAS  Google Scholar 

  • Clarke BO (2011) Review of emerging organic contaminants in biosolids and assessment of Turan

    Google Scholar 

  • Cornu JY, Bakoto R, Bonnard O, Bussiere S, Coriou C, Sirguey C, Nguyen C (2016) Cadmium uptake and partitioning during the vegetative growth of sunflower exposed to low Cd2+ concentrations in hydroponics. Plant Soil 404(1–2):263–275

    Article  CAS  Google Scholar 

  • De Juan JA, Tarjuelo JM, Valiente M, Garcia P (1996) Model for optimal cropping patterns within the farm based on crop water production functions and irrigation uniformity I: Development of a decision model. Agric Water Manag 31(1–2):115–143

    Article  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  • Edelstein M, Ben-Hur M (2018) Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci Hortic 234:431–444

    Article  CAS  Google Scholar 

  • El-Kady AA, Abdel-Wahhab MA (2018) Occurrence of trace metals in foodstuffs and their health impact. Trends Food Sci Technol 75:36–45

    Article  CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756–772

    Article  Google Scholar 

  • Evans RM, Palmiter RD, Brinster RL (1989) US Patent No. 4,870,009. US Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geo microbiology and bioremediation. Microbiology 156(3):609–643

    Article  CAS  PubMed  Google Scholar 

  • Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess 187:201–214

    Article  PubMed  Google Scholar 

  • Grant K, Goldizen FC, Sly PD, Brune MN, Neira M, van den Berg M, Norman RE (2013) Health consequences of exposure to e-waste: a systematic review. Lancet Glob Health 1(6):350–361

    Article  Google Scholar 

  • Gupta N, Yadav KK, Kumar V, Kumar S, Chadd RP, Kumar A (2018) Trace elements in soil-vegetables interface: translocation, bioaccumulation, toxicity and amelioration—a review. Sci Total Environ 651:2927–2942

    Article  PubMed  Google Scholar 

  • Gupta N, Gedam VV, Moghe C, Labhasetwar P (2019) Comparative assessment of batch and column leaching studies for heavy metals release from coal fly ash bricks and clay bricks. Environ Technol Innov 16:1004–1046

    Article  Google Scholar 

  • Hao J, Wei Z, Wei D, Mohamed TA, Yu H, Xie X, Zhao Y (2019) Roles of adding biochar and montmorillonite alone on reducing the bioavailability of heavy metals during chicken manure composting. Biores Technol 294:122–199

    Article  Google Scholar 

  • Huang Z, Pan XD, Wu PG, Han JL, Chen Q (2014) Heavy metals in vegetables and the health risk to population in Zhejiang China. Food Control 36(1):248–252

    Article  CAS  Google Scholar 

  • Iyengar GV, Nair PP (2000) Global outlook on nutrition and the environment: meeting the challenges of the next millennium. Sci Total Environ 249(1–3):331–346

    Article  CAS  PubMed  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Jan AT, Ali A, Haq Q (2011) Glutathione as an antioxidant in inorganic mercury induced nephrotoxicity. J Postgrad Med 57:72–77

    Article  CAS  PubMed  Google Scholar 

  • Kamunda C, Mathuthu M, Madhuku M (2016) Health risk assessment of heavy metals in soils from Witwatersrand gold mining basin, South Africa. Int J Environ Res Public Health 13:663

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan S, Farooq R, Shahbaz S, Khan MA, Sadique M (2009) Health risk assessment of heavy metals for population via consumption of vegetables. World Appl Sci J 6(12):1602–1606

    CAS  Google Scholar 

  • Khan S, Waqas M, Ding F, Shamshad I, Arp HPH, Li G (2015) The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.). J Hazard Mater 300:243–253

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Ramzani PMA, Zubair M, Rasool B, Khan MK, Ahmed A, Iqbal M (2020) Associative effects of lignin-derived biochar and arbuscular mycorrhizal fungi applied to soil polluted from Pb-acid batteries effluents on barley grain safety. Sci Total Environ 710:136294

    Google Scholar 

  • Kihampa C, Mwegoha WJS, Shemdoe RS (2011) Heavy metal concentrations in vegetables grown in the vicinity of the closed dumpsite. Int J Environ Sci 2:889–895

    CAS  Google Scholar 

  • Kim HS, Kim KR, Kim HJ, Yoon JH, Yang JE, Ok YS, Kim KH (2015) Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ Earth Sci 74:1249–1259

    Article  CAS  Google Scholar 

  • Kumar V, Chopra AK (2014) Ferti-irrigation effect of paper mill effluent on agronomical practices of Phaseolus vulgaris (L.) in two seasons. Commun Soil Sci Plan 45:2151–2170

    Article  CAS  Google Scholar 

  • Kumar V, Thakur RK, Kumar P (2019) Assessment of heavy metals uptake by cauliflower (Brassica oleracea var. botrytis) grown in integrated industrial effluent irrigated soils: a prediction modeling study. Sci Hortic 257:108–132

    Article  Google Scholar 

  • Lente I, Ofosu-Anim J, Brimah AK, Atiemo S (2014) Heavymetal pollution of vegetable crops irrigated with wastewater in Accra, Ghana. West Afr J App Ecol 22:41–58

    Google Scholar 

  • Li N, Kang Y, Pan W, Zeng L, Zhang Q, Luo J (2015) Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China. Sci Total Environ 521:144–151

    Article  PubMed  Google Scholar 

  • Liao J, Wen Z, Ru X, Chen J, Wu H, Wei C (2016) Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province, China. Ecotox Environ Safe 124:460–469

    Article  CAS  Google Scholar 

  • Luo L, Ma Y, Zhang S, Wei D, Zhu YG (2009) An inventory of trace element inputs to agricultural soils in China. J Environ Manag 90:2524–2530

    Article  CAS  Google Scholar 

  • Mahmood A, Malik RN (2014) Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arab J Chem 7:91–99

    Article  CAS  Google Scholar 

  • Manzoor J, Sharma M, Wani KA (2018) Heavy metals in vegetables and their impact on the nutrient quality of vegetables: a review. J Plant Nutr 41:1744–1763

    Article  CAS  Google Scholar 

  • Markowitz M (2000) Lead poisoning: a disease for the next millennium. Curr Probl Pediatr 30:62–70

    Article  CAS  PubMed  Google Scholar 

  • Martin S, Griswold W (2009) Human health effects of heavy metals. Environ Sci Technol Briefs Citizens 15:1–6

    Google Scholar 

  • McLaughlin MJ, Zarcinas BA, Stevens DP, Cook N (2000) Soil testing for heavy metals. Commun Soil Sci Plan 31:1661–1700

    Article  CAS  Google Scholar 

  • Monteiro MS, Santos C, Soares AMVM, Mann RM (2009) Assessment of biomarkers of cadmium stress in lettuce. Ecotox Environ Safe 72(3):811–818

    Article  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  • Oves M, Khan MS, Zaidi A, Ahmad E (2012) Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview. Toxicol Heavy Metals Leg Biorem 23:1–27

    Google Scholar 

  • Pandey B, Suthar S, Singh V (2016) Accumulation and health risk of heavy metals in sugarcane irrigated with industrial effluent in some rural areas of Uttarakhand, India. Process Saf Environ Prot 102:655–666

    Article  CAS  Google Scholar 

  • Parashar P, Prasad FM (2013) Study of heavy metal accumulation in sewage irrigated vegetables in different regions of Agra District India. Open J Soil Sci 3(1):1–8

    Article  Google Scholar 

  • Pavithra D, Yapa N (2018) Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. Groundw Sustain Dev 7:490–494

    Article  Google Scholar 

  • Puga AP, Abreu CA, Melo LCA, Paz-Ferreiro J, Beesley L (2015) Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Environ Sci Pollut Res 22:17606–17614

    Article  CAS  Google Scholar 

  • Qureshi AS, Hussain MI, Ismail S, Khan QM (2016) Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater. Chemosphere 163:54–61

    Article  CAS  PubMed  Google Scholar 

  • Radziemska M, Wyszkowski M, Bęś A, Mazur Z, Jeznach J, Brtnický M (2019) The applicability of compost, zeolite and calcium oxide in assisted remediation of acidic soil contaminated with Cr (III) and Cr (VI). Environ Sci Pollut Res 26:21351–21362

    Article  CAS  Google Scholar 

  • Radziemska M, Bęś A, Gusiatin ZM, Cerdà A, Jeznach J, Mazur Z, Brtnický M (2020) Assisted phytostabilization of soil from a former military area with mineral amendments. Ecotoxicol Environ Saf 188:109–124

    Article  Google Scholar 

  • Rai PK, Kumar V, Lee SS, Naddem R, Ok YS, Kim KH, Tsang DSW (2018) Nanoparticle plant interaction: implications in energy, the environment, and agriculture. Environ Int 119:1–19

    Article  CAS  PubMed  Google Scholar 

  • Ratul AK, Hassan M, Uddin MK, Sultana MS, Akbor MA, Ahsan MA (2018) Potential health risk of heavy metals accumulation in vegetables irrigated with polluted river water. Int Food Res J 25:44–57

    Google Scholar 

  • Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Wang X (2020). Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review. J Hazard Mater 123919

    Google Scholar 

  • Sato A, Takeda H, Oyanagi W, Nishihara E, Murakami M (2010) Reduction of cadmium uptake in spinach (Spinacia oleracea L.) by soil amendment with animal waste compost. J Hazard Mater 181(1–3):298–304

    Google Scholar 

  • Saumel I, Kotsyuk I, Hölscher M, Lenkereit C, Weber F, Kowarik I (2012) How healthy is urban horticulture in high traffic areas? trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environ Pollut 165:124–132

    Article  PubMed  Google Scholar 

  • Seregin I, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    Article  CAS  Google Scholar 

  • Shahbaz AK, Iqbal M, Jabbar A, Hussain S, Ibrahim M (2018) Assessment of nickel bioavailability through chemical extractants and red clover (Trifolium pratense L.) in an amended soil: related changes in various parameters of red clover. Ecotox Environ Safe 149:116–127

    Article  CAS  Google Scholar 

  • Shahid M, Austruy A, Echevarria G, Arshad M, Sanaullah M, Aslam M, Dumat C (2014) EDTA-enhanced phytoremediation of heavy metals: a review. Soil Sediment Contam: an Int J 23:389–416

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58

    Article  CAS  PubMed  Google Scholar 

  • Shakoor MB, Nawaz R, Hussain F, Raza M, Ali S, Rizwan M, Ahmad S (2017) Human health implications, risk assessment and remediation of As-contaminated water: a critical review. Sci Total Environ 601:756–769

    Article  PubMed  Google Scholar 

  • Shan H, Su S, Liu R, Li S (2016) Cadmium availability and uptake by radish (Raphanus sativus) grown in soils applied with wheat straw or composted pig manure. Environ Sci Pollut Res 23:15208–15217

    Article  CAS  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2010) Soil reclamation of abandoned mine land by revegetation: a review. Int J Soil Sediment Water 3:13–25

    Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2016) Factors affecting phytoextraction: a review. Pedosphere 26:148–166

    Article  CAS  Google Scholar 

  • Silberstein T, Saphier O, Paz-Tal O, Trimarchi JR, Gonzalez L, Keefe DL (2006) Lead concentrates in ovarian follicle compromises pregnancy. J Trace Elem Med Biol 20:205–207

    Article  CAS  PubMed  Google Scholar 

  • Silveira MLA, Alleoni LRF, Guilherme LRG (2003) Biosolids and heavy metals in soils. Sci Agric 60:793–806

    Article  CAS  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2015) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:11–43

    Google Scholar 

  • Singh D, Patel N, Patra S, Singh N, Roy T, Caucci S, Hettiarachchi H (2020). Efficacy of drip irrigation in controlling heavy-metal accumulation in soil and crop. J Environ Eng Sci :1–13

    Google Scholar 

  • Slavin JL, Lloyd B (2012) Health henefits of fruits and vegetables. Adv Nutr 3:506–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AH, Lopipero PA, Bates MN, Steinmaus CM (2002) Arsenic epidemiology and drinking water standards. Science 296(5576):2145–2146

    Article  CAS  PubMed  Google Scholar 

  • Song XD, Xue XY, Chen DZ, He PJ, Dai XH (2014) Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere 109:213–220

    Article  CAS  PubMed  Google Scholar 

  • Sridhar BM, Vincent RK, Roberts SJ, Czajkowski K (2011) Remote sensing of soybean stress as an indicator of chemical concentration of biosolid amended surface soils. Int J Appl Earth Obs 13(4):676–681

    Google Scholar 

  • Sridhar SGD, Sakthivel AM, Sangunathan U, Balasubramanian M, Jenefer S, Rafik MM, Kanagaraj G (2017) Heavy metal concentration in groundwater from besant nagar to sathankuppam, south Chennai, Tamil nadu, India. Appl Water Sci 7:4651–4662

    Article  CAS  Google Scholar 

  • Tack FM (2017) Watering regime influences Cd concentrations in cultivated spinach. J Environ Manage 186:201–206

    Article  CAS  PubMed  Google Scholar 

  • Tauqeer HM, Hussain S, Abbas F, Iqbal M (2019) The potential of an energy crop Conocarpus erectus for lead phytoextraction and phytostabilization of chromium, nickel, and cadmium: an excellent option for the management of multi-metal contaminated soils. Ecotoxicol Environ Saf 173:273–284

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Lata C (2018) Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Front Plant Sci 9:452

    Article  PubMed  PubMed Central  Google Scholar 

  • Toth G, Hermann T, Da Silva MR, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299–330

    Article  CAS  PubMed  Google Scholar 

  • Turan V, Khan SA, Iqbal M, Ramzani PMA, Fatima M (2018) Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotox Environ Safe 161:409–419

    Article  CAS  Google Scholar 

  • Türkdoğan MK, Kilicel F, Kara K, Tuncer I, Uygan I (2003) Heavy metals in soil, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey. Environ Toxicol Pharmacol 13:175–179

    Article  PubMed  Google Scholar 

  • Wang T, Sun H, Mao H, Zhang Y, Wang C, Zhang Z, Sun L (2014) The immobilization of heavy metals in soil by bioaugmentation of a UV-mutant Bacillus subtilis 38 assisted by NovoGro biostimulation and changes of soil microbial community. J Hazard Mater 278:483–490

    Article  CAS  PubMed  Google Scholar 

  • Wang ZJ, Ghasimi S, Landfester K, Zhang KA (2015) Photocatalytic suzuki coupling reaction using conjugated microporous polymer with immobilized palladium nanoparticles under visible light. Chem Mater 27:1921–1924

    Article  CAS  Google Scholar 

  • Woldetsadik D, Drechsel P, Keraita B, Marschner B, Itanna F, Gebrekidan H (2016) Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils. Springerplus 5:397–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Woldetsadik D, Drechsel P, Keraita B, Itanna F, Gebrekidan H (2017) Heavy metal accumulation and health risk assessment in wastewater-irrigated urban vegetable farming sites of Addis Ababa, Ethiopia. Int J Food Contam 4:9–27

    Article  Google Scholar 

  • Xu G, Zhang Y, Sun J, Shao H (2016) Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Sci Total Environ 568:910–915

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Qi J, Yang W, Chen Y, Yang C, He Y, Lin A (2019) Immobilization of heavy metals in vegetable-growing soils using nano zero-valent iron modified attapulgite clay. Sci Total Environ 686:476–483

    Article  CAS  PubMed  Google Scholar 

  • Yadav KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, Khan SA (2018) Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng 120:274–298

    Article  Google Scholar 

  • Yang J, Guo H, Ma Y, Wang L, Wei D, Hua L (2010) Genotypic variations in the accumulation of Cd exhibited by different vegetables. J Environ Sci 22:1246–1252

    Article  CAS  Google Scholar 

  • Yang Q, Li Z, Lu X, Duan Q, Huang L, Bi J (2018) A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci Total Environ 642:690–700

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Sun Q, Wang C, Wang PF, Ding SM (2017) Evaluation of organic amendment on the effect of cadmium bioavailability in contaminated soils using the DGT technique and traditional methods. Environ Sci Pollut Res 24:7959–7968

    Article  CAS  Google Scholar 

  • Yin H, Tan N, Liu C, Wang J, Liang X, Qu M, Liu F (2016) The associations of heavy metals with crystalline iron oxides in the polluted soils around the mining areas in Guangdong Province, China. Chemosphere 161:181–189

    Article  CAS  PubMed  Google Scholar 

  • Zhai X, Li Z, Huang B, Luo N, Huang M, Zhang Q, Zeng G (2018) Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Sci Total Environ 635:92–99

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Yang WT, Zhou X, Liu L, Gu JF, Wang WL, Zou JL, Tian T, Peng PQ, Liao BH (2016) Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. Int J Environ Res Public Health 13:289–304

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Iqbal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tauqeer, H.M., Turan, V., Iqbal, M. (2022). Production of Safer Vegetables from Heavy Metals Contaminated Soils: The Current Situation, Concerns Associated with Human Health and Novel Management Strategies. In: Malik, J.A. (eds) Advances in Bioremediation and Phytoremediation for Sustainable Soil Management. Springer, Cham. https://doi.org/10.1007/978-3-030-89984-4_19

Download citation

Publish with us

Policies and ethics