Skip to main content

Inorganic Conversion Coatings: Composition , Mechanism, and Paint Adhesion

  • Chapter
  • First Online:
Conversion Coatings for Magnesium and its Alloys

Abstract

From chromate- and phosphate- to zirconium-based, various inorganic conversion coatings for Mg alloys have been investigated in the past decades. The main function of conversion coatings is to improve the corrosion resistance and adhesion of the subsequent paints (organic coatings) on Mg alloys. Although inorganic conversion systems are developed based on different reactants, the deposition mechanisms can be categorized in two major types: reduction-type motivated by hydrogen evolution reaction and oxidation-type by dissolution of Mg. The difference in deposition mechanism is decisive for both chemical composition and defects of conversion coatings and thus strongly affects the corrosion properties of coated Mg alloys. Due to the limited corrosion resistance improvements in conversion coating treatment, a posttreatment of painting is usually required to provide additional protection to Mg alloys. Unlike inorganic conversion coatings formed chemically or electrochemically, most paints are attached on Mg alloys physically, and the adhesion of paints is crucial to ensure the long-term corrosion protection performance. The inorganic conversion coating thus plays an important role in providing barrier protection itself and strengthening the adhesion of subsequent paints on Mg articles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atrens, A., Song, G., Liu, M., Shi, Z., Cao, F., & Dargusch, S. (2015). Review of recent developments in the field of magnesium corrosion. Advanced Engineering Materials, 17, 400–453.

    Article  CAS  Google Scholar 

  • Chen, X.-B., Zhou, X., Abbott, T. B., Easton, M. A., & Birbilis, N. (2013). Double-layered manganese phosphate conversion coating on magnesium alloy AZ91D: Insights into coating formation, growth and corrosion resistance. Surface and Coatings Technology, 217, 147–155.

    Article  CAS  Google Scholar 

  • Chen, Y., Xu, Z., Smith, C., & Sankar, J. (2014). Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomaterialia, 10, 4561–4573.

    Article  CAS  Google Scholar 

  • Chen, J., Song, Y., Shan, D., & Han, E.-H. (2015). Influence of alloying elements and microstructure on the formation of hydrotalcite film on Mg alloys. Corrosion Science, 93, 90–99.

    Article  CAS  Google Scholar 

  • Chiu, K. Y., Wong, M. H., Cheng, F. T., & Man, H. C. (2007). Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants. Surface and Coatings Technology, 202, 590–598.

    Article  CAS  Google Scholar 

  • Chong, K. Z., & Shih, T. S. (2003). Conversion –coating treatment for magnesium alloys by a permanganate-phosphate solution. Materials Chemistry and Physics, 80, 191–200.

    Article  CAS  Google Scholar 

  • Chu, Y. R., & Lin, C. S. (2016). A comparative study of cerium and aluminum conversion coatings on AZ31 magnesium alloy in aqueous and ethanol solutions. ECS Meeting Abstract, MA2016-01:935–935.

    Google Scholar 

  • Da Conceicao, T. F., Scharnagl, N., Blawert, C., Dietzel, W., & Kainer, K. U. (2010). Surface modification of magnesium alloy AZ31 by hydrofluoric acid treatment and its effect on the corrosion behaviour. Thin Solid Films, 518, 5209–5218.

    Article  CAS  Google Scholar 

  • Dabalá, M., Brunelli, K., Napolitani, E., & Magrini, M. (2003). Cerium-based chemical conversion coating on AZ63 magnesium alloy. Surface and Coatings Technology, 172, 227–232.

    Article  CAS  Google Scholar 

  • Duan, G., Yang, L., Liao, S., Zhang, C., Lu, X., Yang, Y., Zhang, B., Wei, Y., Zhang, T., Yu, B., Zhang, X., & Wang, F. (2018). Designing for the chemical conversion coating with high corrosion resistance and low electrical contact resistance on AZ91D magnesium alloy. Corrosion Science, 135, 197–206.

    Article  CAS  Google Scholar 

  • Esmaily, M., Svensson, J. E., Fajardo, S., Birbilis, N., Frankel, G. S., Virtanen, S., Arrabal, R., Thomas, S., & Johansson, L. G. (2017). Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science, 89, 92–193.

    Article  CAS  Google Scholar 

  • Fintová, S., Drábiková, J., Pastorek, F., Tkacz, J., Kuběna, I., Trško, L., Hadzima, B., Minda, J., Doležal, P., Wasserbauer, J., & Ptáček, P. (2019). Improvement of electrochemical corrosion characteristics of AZ61 magnesium alloy with unconventional fluoride conversion coatings. Surface and Coatings Technology, 357, 638–650.

    Article  CAS  Google Scholar 

  • Fockaert, L. I., Pletincx, S., Boelen, B., Hauffman, T., Terryn, H., & Mol, J. M. C. (2020). Effect of zirconium-based conversion treatments of zinc, aluminium and magnesium on the chemisorption of ester-functionalized molecules. Applied Surface Science, 508, 145199.

    Article  CAS  Google Scholar 

  • Ger, M., Yang, K., Sung, Y., Hwu, W., & Liu, Y. (2004). Method for treating magnesium alloy by chemical conversion. US Patent 6,755,918.

    Google Scholar 

  • Ghali, E., Dietzel, W., & Kainer, K.-U. (2004). General and localized corrosion of magnesium alloys: A critical review. Journal of Materials Engineering and Performance, 13, 7–23.

    Article  CAS  Google Scholar 

  • Gonzalez-Nunez, M. A., Nunez-Lopez, C. A., Skeldon, P., Thompson, G. E., Karimzadeh, H., Lyon, P., & Wilks, T. E. (1995). A non-chromate conversion coating for magnesium alloys and magnesium-based metal matrix composites. Corrosion Science, 37, 1763–1772.

    Article  CAS  Google Scholar 

  • Gray, J. E., & Luan, B. (2002). Protective coatings on magnesium and its alloys—A critical review. Journal of Alloys and Compounds, 336, 88–113.

    Article  CAS  Google Scholar 

  • Hawke, D., & Albright, D. L. (1995). A phosphate-permanganate conversion coating for magnesium. Metal Finishing, 93, 34–38.

    Article  CAS  Google Scholar 

  • Hu, R. G., Zhang, S., Bu, J. F., Lin, C. J., & Song, G. L. (2012). Recent progress in corrosion protection of magnesium alloys by organic coatings. Progress in Organic Coating, 73, 129–141.

    Article  CAS  Google Scholar 

  • Hung, S. M., Lin, H., Chen, H. W., Chen, S. Y., & Lin, C. S. (2021). Corrosion resistance and electrical contact resistance of a thin permanganate conversion coating on dual-phase LZ91 Mg-Li alloy. Journal of Materials Research and Technology, 11, 1953–1968.

    Article  CAS  Google Scholar 

  • Huo, H., Li, Y., & Wang, F. (2004). Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corrosion Science, 46, 1467–1477.

    Article  CAS  Google Scholar 

  • Jian, S. Y., Chu, Y. R., & Lin, C. S. (2015). Permanganate conversion coating on AZ31 magnesium alloys with enhanced corrosion resistance. Corrosion Science, 93, 301–309.

    Article  CAS  Google Scholar 

  • Joost, W. J., & Krajewski, P. E. (2017). Towards magnesium alloys for high-volume automotive applications. Scripta Materialia, 128, 107–112.

    Article  CAS  Google Scholar 

  • Kouisni, L., Azzi, M., Zertoubi, M., Dalard, F., & Maximovitch, S. (2004). Phosphate coatings on magnesium alloy AM60 part 1: Study of the formation and the growth of zinc phosphate films. Surface and Coatings Technology, 185, 58–67.

    Article  CAS  Google Scholar 

  • Lee, Y. L., & Lin, C. S. (2010). Influence of die-chill skin on the formation of stannate conversion coating on AZ91D magnesium alloy. Journal of the Electrochemical Society, 157, C187–C193.

    Article  CAS  Google Scholar 

  • Lee, Y. L., Chu, Y. R., Chen, F. J., & Lin, C. S. (2013). Mechanism of the formation of stannate and cerium conversion coatings on AZ91D magnesium alloys. Applied Surface Science, 276, 578–585.

    Article  CAS  Google Scholar 

  • Lin, C. S., & Li, W. J. (2006). Corrosion resistance of cerium-conversion coated AZ31 magnesium alloys in cerium nitrate solutions. Materials Transactions, 47, 1020–1025.

    Article  CAS  Google Scholar 

  • Lin, J. K., & Uan, J. Y. (2009). Formation of Mg,Al-hydrotalcite conversion coating on Mg alloy in aqueous HCO3/CO32− and corresponding protection against corrosion by the coating. Corrosion Science, 51, 1181–1188.

    Article  CAS  Google Scholar 

  • Lin, C. S., Lin, H. C., Lin, K. M., & Lai, W. C. (2006). Formation and properties of stannate conversion coatings on AZ61 magnesium alloys. Corrosion Science, 48, 93–109.

    Article  CAS  Google Scholar 

  • Montemor, M. F., Simões, A. M., & Carmezim, M. J. (2007). Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection. Applied Surface Science, 253, 6922–6931.

    Article  CAS  Google Scholar 

  • Mordike, B. L., & Ebert, T. (2001). Magnesium: Properties—Applications—Potential. Materials Science and Engineering: A, 302, 37–45.

    Article  Google Scholar 

  • Niu, L. Y., Jiang, Z. H., Li, G. Y., Gu, C. D., & Lian, J. S. (2006). A study and application of zinc phosphate coating on AZ91D magnesium alloy. Surface and Coatings Technology, 200, 3021–3026.

    Article  CAS  Google Scholar 

  • Nordlien, J. H., Ono, S., Masuko, N., & NişancioǦu, K. (1995). Morphology and structure of oxide films formed on magnesium by exposure to air and water. Journal of the Electrochemical Society, 142, 3320–3322.

    Article  CAS  Google Scholar 

  • Ohse, T., Tsubakino, H., & Yamamoto, A. (2005). Surface modification on magnesium alloys by coating with magnesium fluorides. Materials Science Forum, 475-479, 505–508.

    Article  Google Scholar 

  • Ono, S., Asami, K., & Masuko, N. (2001). Mechanism of chemical conversion coating film growth on magnesium and magnesium alloys. Materials Transactions, 42, 1225–1231.

    Article  CAS  Google Scholar 

  • Pesterfield, L. L., Maddox, J. B., Crocker, M. S., & Schweitzer, G. K. (2012). Pourbaix (E-pH-M) diagrams in three dimensions. Journal of Chemical Education, 89, 891–899.

    Article  CAS  Google Scholar 

  • Phuong, N. V., Gupta, M., & Moon, S. (2017). Adhesion and corrosion studies of electrophoretic paint on AZ31 Mg alloy pretreated in cerium solution with and without addition of ethanol. Progress in Organic Coating, 102(B), 144–150.

    Article  CAS  Google Scholar 

  • Pourbaix, M. (1974). Atlas of electrochemical equilibria in aqueous solutions (2nd ed.). NACE, 141.

    Google Scholar 

  • Radha, R., & Sreekanth, D. (2017). Insight of magnesium alloys and composites for orthopedic implant applications – A review. Journal of Magnesium and Alloys, 5, 286–312.

    Article  CAS  Google Scholar 

  • Rudd, A. L., Breslin, C. B., & Mansfeld, F. (2000). The corrosion protection afforded by rare earth conversion coatings applied to magnesium. Corrosion Science, 42, 275–288.

    Article  CAS  Google Scholar 

  • Sankara Narayanan, T. S. N., Park, I. S., & Lee, M. H. (2014). Tailoring the composition of fluoride conversion coatings to achieve better corrosion protection of magnesium for biomedical applications. Journal of Materials Chemistry B, 2, 3365–3382.

    Article  CAS  Google Scholar 

  • Song, G., & Atrens, A. (2003). Understanding magnesium corrosion–a framework for improved alloy performance. Advanced Engineering Materials, 5, 837–858.

    Article  CAS  Google Scholar 

  • Su, Y., Guo, Y., Huang, Z., Zhang, Z., Li, G., Lian, J., & Ren, L. (2016). Preparation and corrosion behaviors of calcium phosphate conversion coating on magnesium alloy. Surface and Coatings Technology, 307(A), 99–108.

    Article  CAS  Google Scholar 

  • Takenaka, T., Ono, T., Narazaki, Y., Naka, Y., & Kawakami, M. (2007). Improvement of corrosion resistance of magnesium metal by rare earth elements. Electrochimica Acta, 53, 117–121.

    Article  CAS  Google Scholar 

  • Umehara, H., Terauchi, S., & Takaya, M. (2000). Structure and corrosion behavior of conversion coatings on magnesium alloys. Materials Science Forum, 350-351, 273–282.

    Article  CAS  Google Scholar 

  • Umehara, H., Takaya, M., & Kojima, Y. (2001). An investigation of the structure and corrosion resistance of permanganate conversion coatings on AZ91D magnesium alloy. Materials Transactions, 42, 1691–1699.

    Article  CAS  Google Scholar 

  • Verdier, S., Van der Laak, N., Delalande, S., Metson, J., & Dalard, F. (2004). The surface reactivity of a magnesium–aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS. Applied Surface Science, 235, 513–524.

    Article  CAS  Google Scholar 

  • Wang, C., Zhu, S., Jiang, F., & Wang, F. (2009). Cerium conversion coatings for AZ91D magnesium alloy in ethanol solution and its corrosion resistance. Corrosion Science, 51, 2916–2923.

    Article  CAS  Google Scholar 

  • Wang, J., Li, D., Liu, Q., Yin, X., Zhang, Y., Jing, X., & Zhang, M. (2010). Fabrication of hydrophobic surface with hierarchical structure on Mg alloy and its corrosion resistance. Electrochimica Acta, 55, 6897–6906.

    Article  CAS  Google Scholar 

  • Yamamoto, A., Terawaki, T., & Tsubakino, H. (2008). Microstructures and corrosion properties on fluoride treated magnesium alloy. Materials Transactions, 49, 1042–1047.

    Article  CAS  Google Scholar 

  • Yang, Y. C., Tsai, C. Y., Huang, Y. H., & Lin, C. S. (2012). Formation mechanism and properties of titanate conversion coating on AZ31 magnesium alloy. Journal of the Electrochemical Society, 159, C226–C232.

    Article  CAS  Google Scholar 

  • Zhang, C., Liu, B., Yu, B., Lu, X., Wei, Y., Zhang, T., Mol, J. M. C., & Wang, F. (2019). Influence of surface pretreatment on phosphate conversion coating on AZ91 Mg alloy. Surface and Coatings Technology, 359, 414–425.

    Article  CAS  Google Scholar 

  • Zhao, M., Wu, S., Luo, J., Fukuda, Y., & Nakae, H. (2006). A chromium-free conversion coating of magnesium alloy by a phosphate-permanganate solution. Surface and Coatings Technology, 200, 5407–5412.

    Article  CAS  Google Scholar 

  • Zhou, W., Shan, D., Han, E. H., & Ke, W. (2008). Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy. Corrosion Science, 50, 329–337.

    Article  CAS  Google Scholar 

  • Zhou, P., Yu, B., Hou, Y., Duan, G., Yang, L., Zhang, B., Zhang, T., & Wang, F. (2021). Revisiting the cracking of chemical conversion coating on magnesium alloys. Corrosion Science, 178, 109069.

    Article  CAS  Google Scholar 

  • Zucchi, F., Frignani, A., Grassi, V., Trabanelli, G., & Monticelli, C. (2007). Stannate and permanganate conversion coatings on AZ31 magnesium alloy. Corrosion Science, 49, 4542–4552.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Sung Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chu, YR., Lee, YL., Lin, CS. (2022). Inorganic Conversion Coatings: Composition , Mechanism, and Paint Adhesion. In: Saji, V.S., Sankara Narayanan, T.S.N., Chen, X. (eds) Conversion Coatings for Magnesium and its Alloys. Springer, Cham. https://doi.org/10.1007/978-3-030-89976-9_2

Download citation

Publish with us

Policies and ethics