Skip to main content

Financial Time Series Forecasting Applying Deep Learning Algorithms

  • Conference paper
  • First Online:
Information and Communication Technologies (TICEC 2021)

Abstract

Deep learning methods can identify and analyze complex patterns and interactions within the data to optimize the trading process. This work presents a deep learning algorithm for intraday stock prices forecasting of Amazon, Inc. We focus on deep architectures such as convolutional neural networks (CNN), long short-term memory (LSTM), and densely-connected neural networks (NN). Results have shown that the combination of these architectures increases the accuracy when forecasting non-stationary time series. Furthermore, the evaluation of the proposed method has resulted in a mean absolute error (MAE) of 6.7 for one-step-ahead forecasting and 9.94 for four-step ahead forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/ranaroussi/yfinance, Last access: June, 2021.

References

  1. Altman, E.I., Marco, G., Varetto, F.: Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks (the Italian experience). J. Bank. Financ. 18(3), 505–529 (1994)

    Article  Google Scholar 

  2. Ariyo, A.A., Adewumi, A.O., Ayo, C.K.: Stock price prediction using the ARIMA model. In: 16th International Conference on Computer Modelling and Simulation, pp. 106–112. IEEE (2014)

    Google Scholar 

  3. Atsalakis, G.S., Valavanis, K.P.: Surveying stock market forecasting techniques-part II: soft computing methods. Expert Syst. Appl. 36(3), 5932–5941 (2009)

    Article  Google Scholar 

  4. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al.: Greedy layer-wise training of deep networks. Adv. Neural Inf. Process. Syst. 19, 153 (2007)

    Google Scholar 

  5. Bollerslev, T., Marrone, J., Xu, L., Zhou, H.: Stock return predictability and variance risk premia: statistical inference and international evidence. J. Financ. Quantit. Anal. 49, 633–661 (2014)

    Article  Google Scholar 

  6. Cakra, Y.E., Trisedya, B.D.: Stock price prediction using linear regression based on sentiment analysis. In: International Conference on Advanced Computer Science and Information Systems, pp. 147–154. IEEE (2015)

    Google Scholar 

  7. Chen, Y., Kang, Y., Chen, Y., Wang, Z.: Probabilistic forecasting with temporal convolutional neural network. ArXiv preprint arXiv: 1906.04397 (2020)

  8. Deboeck, G.J.: Trading on the Edge: Neural, Genetic, and Fuzzy Systems for Chaotic Financial Markets, vol. 39. Wiley, Hoboken (1994)

    Google Scholar 

  9. Durbin, J., Koopman, S.J.: Time Series Analysis by State Space Methods. Oxford University Press, Oxford (2012)

    Book  Google Scholar 

  10. Ferreira, M.A., Santa-Clara, P.: Forecasting stock market returns: the sum of the parts is more than the whole. J. Financ. Econ. 100(3), 514–537 (2011)

    Article  Google Scholar 

  11. Franses, P.H., Ghijsels, H.: Additive outliers, GARCH and forecasting volatility. Int. J. Forecast. 15(1), 1–9 (1999)

    Article  Google Scholar 

  12. Heaton, J., Polson, N.G., Witte, J.H.: Deep learning in finance. ArXiv preprint arXiv:1602.06561 (2016)

  13. Huang, C.J., Yang, D.X., Chuang, Y.T.: Application of wrapper approach and composite classifier to the stock trend prediction. Expert Syst. Appl. 34(4), 2870–2878 (2008)

    Article  Google Scholar 

  14. Huang, N.E., Wu, M.L., Qu, W., Long, S.R., Shen, S.S.: Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Appl. Stochast. Models Bus. Ind. 19(3), 245–268 (2003)

    Article  MathSciNet  Google Scholar 

  15. Jensen, M.C.: Some anomalous evidence regarding market efficiency. J. Financ. Econ. 6(2/3), 95–101 (1978)

    Article  Google Scholar 

  16. Jia, H.: Investigation into the effectiveness of long short term memory networks for stock price prediction. ArXiv preprint arXiv:1603.07893 (2016)

  17. Kim, J.H., Shamsuddin, A., Lim, K.P.: Stock return predictability and the adaptive markets hypothesis: evidence from century-long us data. J. Empir. Financ. 18(5), 868–879 (2011)

    Article  Google Scholar 

  18. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–44 (2015)

    Article  Google Scholar 

  19. MacDonald, J.M.: Demand, information, and competition: why do food prices fall at seasonal demand peaks? J. Ind. Econ. 48(1), 27–45 (2000)

    Article  Google Scholar 

  20. Malkiel, B.G.: The efficient market hypothesis and its critics. J. Econ. Perspect. 17(1), 59–82 (2003)

    Article  Google Scholar 

  21. Malkiel, B.G.: A Random Walk Down Wall Street the Time-Tested Strategy for Successful Investing (2021)

    Google Scholar 

  22. Mizuno, R.: The male/female ratio of fetal deaths and births in Japan. Lancet 356(9231), 738–739 (2000)

    Article  Google Scholar 

  23. Murphy, J.J.: Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications. Penguin, New York (1999)

    Google Scholar 

  24. Ou, P., Wang, H.: Prediction of stock market index movement by ten data mining techniques. Mod. Appl. Sci. 3(12), 28–42 (2009)

    Article  Google Scholar 

  25. Roman, J., Jameel, A.: Backpropagation and recurrent neural networks in financial analysis of multiple stock market returns. In: International Conference on System Sciences, vol. 2, pp. 454–460. IEEE (1996)

    Google Scholar 

  26. Sapankevych, N.I., Sankar, R.: Time series prediction using support vector machines: a survey. IEEE Comput. Intell. Mag. 4(2), 24–38 (2009)

    Article  Google Scholar 

  27. Sarantis, N.: Nonlinearities, cyclical behaviour and predictability in stock markets: international evidence. Int. J. Forecast. 17(3), 459–482 (2001)

    Article  Google Scholar 

  28. Schaller, R.R.: Moore’s law: past, present and future. IEEE Spectr. 34(6), 52–59 (1997)

    Article  Google Scholar 

  29. Selvin, S., Vinayakumar, R., Gopalakrishnan, E., Menon, V.K., Soman, K.: Stock price prediction using LSTM, RNN and CNN-sliding window model. In: International Conference on Advances in Computing, Communications and Informatics, pp. 1643–1647. IEEE (2017)

    Google Scholar 

  30. Siami-Namini, S., Namin, A.S.: Forecasting economics and financial time series: ARIMA vs. LSTM. ArXiv preprint arXiv:1803.06386 (2018)

  31. Situngkir, H., Surya, Y.: Neural network revisited: perception on modified Poincare map of financial time-series data. Phys. A: Stat. Mech. Appl. 344(1–2), 100–103 (2004)

    Article  Google Scholar 

  32. Teixeira, L.A., De Oliveira, A.L.I.: A method for automatic stock trading combining technical analysis and nearest neighbor classification. Expert Syst. Appl. 37(10), 6885–6890 (2010)

    Article  Google Scholar 

  33. Tsay, R.S.: Analysis of Financial Time Series, vol. 543. Wiley, Hoboken (2005)

    Book  Google Scholar 

  34. Valueva, M., Nagornov, N., Lyakhov, P., Valuev, G., Chervyakov, N.: Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Math. Comput. Simul. 177, 232–243 (2020)

    Article  MathSciNet  Google Scholar 

  35. Wang, B., Huang, H., Wang, X.: A novel text mining approach to financial time series forecasting. Neurocomputing 83, 136–145 (2012)

    Article  Google Scholar 

  36. White, H.: Economic prediction using neural networks: the case of IBM daily stock returns. In: ICNN, vol. 2, pp. 451–458 (1988)

    Google Scholar 

  37. Wu, J., Wei, S.: Time series analysis. Hum. Sci. Technol. Press 20, 2018 (1989)

    Google Scholar 

  38. Yosinski, J., Clune, J., Nguyen, A.M., Fuchs, T.J., Lipson, H.: Understanding neural networks through deep visualization. ArXiv preprint arXiv:1506.06579 (2015)

  39. Zhang, Q., Luo, R., Yang, Y., Liu, Y.: Benchmarking deep sequential models on volatility predictions for financial time series. ArXiv preprint arXiv:1811.03711 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erik Solís , Sherald Noboa or Erick Cuenca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Solís, E., Noboa, S., Cuenca, E. (2021). Financial Time Series Forecasting Applying Deep Learning Algorithms. In: Salgado Guerrero, J.P., Chicaiza Espinosa, J., Cerrada Lozada, M., Berrezueta-Guzman, S. (eds) Information and Communication Technologies. TICEC 2021. Communications in Computer and Information Science, vol 1456. Springer, Cham. https://doi.org/10.1007/978-3-030-89941-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89941-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89940-0

  • Online ISBN: 978-3-030-89941-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics