Skip to main content

Gated RNN: The Long Short-Term Memory (LSTM) RNN

  • Chapter
  • First Online:
Recurrent Neural Networks

Abstract

Long Short-Term Memory (LSTM) Recurrent Neural networks (RNN) are improved and expanded architectures designed to overcome the shortcomings of training simple RNN (sRNN) simple RNN. They rely on three separate gating signals, each replicates a simple RNN, joined together by the ”memory-cell” structure. This architecture has been the effective and successful workhorse of RNN in numerous applications following its publication in 1997. The chapter introduces the standard architecture which embeds four replica of the simple RNN and thus has four times the parameters. Then, the chapter presents reduced-parameter in the gating signals by introducing five variants that maintain the gating structure while progressively reducing parameters. These five variants belong to the Slim LSTMs. The chapter ends with example case studies of the powerful standard LSTM RNN and the five slim LSTMs exhibiting their comparative performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, M., & Salem, F. M. (1992). Dynamic learning using exponential energy functions. In Proceedings of the IEEE International Joint Conference on Neural Networks pp. (II–121–II–126).

    Google Scholar 

  • Akandeh, A., & Salem, F. M. (2017a). Simplified long short-term memory recurrent neural networks: part I. arXiv:1707.04619.

    Google Scholar 

  • Akandeh, A., & Salem, F. M. (2017b). Simplified long short-term memory recurrent neural networks: Part II. arXiv:1707.04623.

    Google Scholar 

  • Akandeh, A., & Salem, F. M. (2017c). Simplified long short-term memory recurrent neural networks: Part III. arXiv:1707.04626.

    Google Scholar 

  • Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.

    Google Scholar 

  • Chollet, F. Keras. https://keras.io

  • Chollet, F. Keras-codes2. https://github.com/keras-team/keras

  • Chollet, F. Keras-codes. https://github.com/keras-team/keras

  • Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014b). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555

    Google Scholar 

  • Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2002). Learning precise timing with LSTM recurrent networks. Journal of Machine Learning Research, 3, 115–143.

    Google Scholar 

  • Graves, A. (2012). Supervised sequence labelling with recurrent neural networks. In Studies in Computational Intelligence. Springer.

    Google Scholar 

  • Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232.

    Google Scholar 

  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

    Google Scholar 

  • Jianxin, C.-L., Zhang, G.-B., Zhou, Wu, J., & Zhou, Z.-H. (2016). Minimal gated unit for recurrent neural networks. https://arxiv.org/abs/1603.09420.

  • Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y., Chen, Z., Thorat, N., Viégas, F. B., Wattenberg, M., Corrado, G., M. Hughes, & Dean, J. (2016). Google’s multilingual neural machine translation system: Enabling zero-shot translation. http://arxiv.org/abs/1611.04558.

  • Le, Q. V., Jaitly, N., & Hinton, G. E. (2015). A simple way to initialize recurrent networks of rectified linear units. arXiv preprint arXiv:1504.00941

    Google Scholar 

  • Lu, Y., & Salem, F. M. (2017). Simplified gating in long short-term memory (LSTM) recurrent neural networks. In 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS) (p. 1601).

    Google Scholar 

  • Salem, F. M. (2016a). A basic recurrent neural network model. arXiv preprint arXiv:1612.09022.

    Google Scholar 

  • Salem, F. M. (2016b). Reduced parameterization in gated recurrent neural networks. Technical Report 11-2016, MSU.

    Google Scholar 

  • Salem, F. M. (2018). Slim LSTMs. https://arxiv.org/abs/1812.11391

  • Zaremba, W. (2015). An empirical exploration of recurrent network architectures. In An empirical exploration of recurrent network architectures.

    Google Scholar 

  • Zhou, G.-B., Wu, J., Zhang, C.-L., & Zhou, Z.-H. (2016). Minimal gated unit for recurrent neural networks. International Journal of Automation and Computing, 13(3), 226–234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salem, F.M. (2022). Gated RNN: The Long Short-Term Memory (LSTM) RNN. In: Recurrent Neural Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-89929-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89929-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89928-8

  • Online ISBN: 978-3-030-89929-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics