Skip to main content

Future Therapeutic Potential of Synthetic Cannabinoids and Endocannabinoid System Modulators

  • Chapter
  • First Online:
Cannabis and Cannabinoid-Based Medicines in Cancer Care
  • 509 Accesses

Abstract

Since the discovery of the endocannabinoid system and the recently expanded endocannabinoidome, research has generated a cascade of new and exciting avenues for disease treatment. Some of the more promising candidates lie in synthetic cannabinoids and endocannabinoid system modulators, which derive either from synthetic pathways waiting for future approval or may come in the form of presently available nutraceuticals. Many of these compounds are still being studied preclinically and have unknown risks, while many others are manufactured in clandestine laboratories and are presently being used by recreational users. Unlike natural cannabis, synthetic cannabinoids have been associated with increased mortality. Future synthetic cannabinoid-based therapeutics may provide more targeted effects on the endocannabinoidome; the use of presently available nutraceuticals, such as palmitoylethanolamide (PEA), which is one of the few available endocannabinoid system modulators on the market, has been shown to exhibit clinical benefits and offers a peek into the promising horizons that this new class of therapeutics will surely bring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References (Synthetic Cannabinoids)

  1. Abouchedid R, Ho JH, Hudson S, Dines A, Archer JR, Wood DM, Dargan PI. Acute toxicity associated with use of 5F-derivations of synthetic cannabinoid receptor agonists with analytical confirmation. J Med Toxicol. 2016;12:396–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Adamowicz P. Fatal intoxication with synthetic cannabinoid MDMB-CHMICA. Forensic Sci Int. 2016;261:e5–10.

    CAS  PubMed  Google Scholar 

  3. Annuzzi G, Piscitelli F, Di Marino L, Patti L, Giacco R, Costabile G, Bozzetto L, Riccardi G, Verde R, Petrosino S, Rivellese AA, Di Marzo V. Differential alterations of the concentrations of endocannabinoids and related lipids in the subcutaneous adipose tissue of obese diabetic patients. Lipids Health Dis. 2010;9:43.

    PubMed  PubMed Central  Google Scholar 

  4. Alipour A, Patel PB, Shabbir Z, Gabrielson S. Review of the many faces of synthetic cannabinoid toxicities. Ment Health Clin. 2019;9:93–9.

    PubMed  PubMed Central  Google Scholar 

  5. Argamany JR, Reveles KR, Duhon B. Synthetic cannabinoid hyperemesis resulting in rhabdomyolysis and acute renal failure. Am J Emerg Med. 2016;34(765):e1–2.

    Google Scholar 

  6. Benford DM, Caplan JP. Psychiatric sequelae of Spice, K2, and synthetic cannabinoid receptor agonists. Psychosomatics. 2011;52:295.

    PubMed  Google Scholar 

  7. Benowitz NL, Jones RT. Cardiovascular and metabolic considerations in prolonged cannabinoid administration in man. J Clin Pharmacol. 1981;21:214S–23S.

    CAS  PubMed  Google Scholar 

  8. Bisogno T, Martire A, Petrosino S, Popoli P, Di Marzo V. Symptom-related changes of endocannabinoid and palmitoylethanolamide levels in brain areas of R6/2 mice, a transgenic model of Huntington’s disease. Neurochem Int. 2008;52:307–13.

    CAS  PubMed  Google Scholar 

  9. Bogdanovic V, Mrdjanovic J, Borisev I. A review of the therapeutic antitumor potential of cannabinoids. J Altern Complement Med. 2017;23:831–6.

    PubMed  Google Scholar 

  10. Bonhaus DW, Chang LK, Kwan J, Martin GR. Dual activation and inhibition of adenylyl cyclase by cannabinoid receptor agonists: evidence for agonist-specific trafficking of intracellular responses. J Pharmacol Exp Ther. 1998;287:884–8.

    CAS  PubMed  Google Scholar 

  11. Breivogel CS, Wells JR, Jonas A, Mistry AH, Gravley ML, Patel RM, Whithorn BE, Brenseke BM. Comparison of the neurotoxic and seizure-inducing effects of synthetic and endogenous cannabinoids with delta(9)-tetrahydrocannabinol. Cannabis Cannabinoid Res. 2020;5:32–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brents LK, Gallus-Zawada A, Radominska-Pandya A, Vasiljevik T, Prisinzano TE, Fantegrossi WE, Moran JH, Prather PL. Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity. Biochem Pharmacol. 2012;83:952–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Brents LK, Zimmerman SM, Saffell AR, Prather PL, Fantegrossi WE. Differential drug-drug interactions of the synthetic Cannabinoids JWH-018 and JWH-073: implications for drug abuse liability and pain therapy. J Pharmacol Exp Ther. 2013;346:350–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Burkey TH, Quock RM, Consroe P, Ehlert FJ, Hosohata Y, Roeske WR, Yamamura HI. Relative efficacies of cannabinoid CB1 receptor agonists in the mouse brain. Eur J Pharmacol. 1997;336:295–8.

    CAS  PubMed  Google Scholar 

  15. Caballero FJ, Soler-Torronteras R, Lara-Chica M, Garcia V, Fiebich BL, Munoz E, Calzado MA. AM404 inhibits NFAT and NF-kappaB signaling pathways and impairs migration and invasiveness of neuroblastoma cells. Eur J Pharmacol. 2015;746:221–32.

    CAS  PubMed  Google Scholar 

  16. Caffarel MM, Andradas C, Mira E, Perez-Gomez E, Cerutti C, Moreno-Bueno G, Flores JM, Garcia-Real I, Palacios J, Manes S, Guzman M, Sanchez C. Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition. Mol Cancer. 2010;9:196.

    PubMed  PubMed Central  Google Scholar 

  17. Canazza I, Ossato A, Trapella C, Fantinati A, De Luca MA, Margiani G, Vincenzi F, Rimondo C, Di Rosa F, Gregori A, Varani K, Borea PA, Serpelloni G, Marti M. Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on "tetrad", sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies. Psychopharmacology. 2016;233:3685–709.

    CAS  PubMed  Google Scholar 

  18. Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA. Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend. 2014;144:12–41.

    CAS  PubMed  Google Scholar 

  19. Castaneto MS, Wohlfarth A, Desrosiers NA, Hartman RL, Gorelick DA, Huestis MA. Synthetic cannabinoids pharmacokinetics and detection methods in biological matrices. Drug Metab Rev. 2015;47:124–74.

    CAS  PubMed  Google Scholar 

  20. Chimalakonda KC, Bratton SM, Le VH, Yiew KH, Dineva A, Moran CL, James LP, Moran JH, Radominska-Pandya A. Conjugation of synthetic cannabinoids JWH-018 and JWH-073, metabolites by human UDP-glucuronosyltransferases. Drug Metab Dispos. 2011;39:1967–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chimalakonda KC, Seely KA, Bratton SM, Brents LK, Moran CL, Endres GW, James LP, Hollenberg PF, Prather PL, Radominska-Pandya A, Moran JH. Cytochrome P450-mediated oxidative metabolism of abused synthetic cannabinoids found in K2/Spice: identification of novel cannabinoid receptor ligands. Drug Metab Dispos. 2012;40:2174–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chung SC, Hammarsten P, Josefsson A, Stattin P, Granfors T, Egevad L, Mancini G, Lutz B, Bergh A, Fowler CJ. A high cannabinoid CB(1) receptor immunoreactivity is associated with disease severity and outcome in prostate cancer. Eur J Cancer. 2009;45:174–82.

    CAS  PubMed  Google Scholar 

  23. Cohen K, Rosenzweig S, Rosca P, Pinhasov A, Weizman A, Weinstein A. Personality traits and psychotic proneness among chronic synthetic cannabinoid users. Front Psych. 2020;11:355.

    Google Scholar 

  24. Cohen K, Weinstein AM. Synthetic and non-synthetic cannabinoid drugs and their adverse effects-a review from public health prospective. Front Public Health. 2018;6:162.

    PubMed  PubMed Central  Google Scholar 

  25. Compton DR, Rice KC, De Costa BR, Razdan RK, Melvin LS, Johnson MR, Martin BR. Cannabinoid structure-activity relationships: correlation of receptor binding and in vivo activities. J Pharmacol Exp Ther. 1993;265:218–26.

    CAS  PubMed  Google Scholar 

  26. Cooper ZD. Adverse effects of synthetic cannabinoids: management of acute toxicity and withdrawal. Curr Psychiatry Rep. 2016;18:52.

    PubMed  PubMed Central  Google Scholar 

  27. Costain WJ, Tauskela JS, Rasquinha I, Comas T, Hewitt M, Marleau V, Soo EC. Pharmacological characterization of emerging synthetic cannabinoids in HEK293T cells and hippocampal neurons. Eur J Pharmacol. 2016;786:234–45.

    CAS  PubMed  Google Scholar 

  28. Courts J, Maskill V, Gray A, Glue P. Signs and symptoms associated with synthetic cannabinoid toxicity: systematic review. Australas Psychiatry. 2016;24:598–601.

    PubMed  Google Scholar 

  29. Cusick E, Gupta V. Pimavanserin. In: StatPearls. Treasure Island (FL); 2020.

    Google Scholar 

  30. Daris B, Tancer Verboten M, Knez Z, Ferk P. Cannabinoids in cancer treatment: therapeutic potential and legislation. Bosn J Basic Med Sci. 2019;19:14–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Darke S, Duflou J, Farrell M, Peacock A, Lappin J. Characteristics and circumstances of synthetic cannabinoid-related death. Clin Toxicol (Phila). 2020;58:368–74.

    CAS  Google Scholar 

  32. Davis MP. Cannabinoids for symptom management and cancer therapy: the evidence. J Natl Compr Cancer Netw. 2016;14:915–22.

    CAS  Google Scholar 

  33. De Luca MA, Castelli MP, Loi B, Porcu A, Martorelli M, Miliano C, Kellett K, Davidson C, Stair JL, Schifano F, Di Chiara G. Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135. Neuropharmacology. 2016;105:630–8.

    PubMed  Google Scholar 

  34. DeKarske D, Alva G, Aldred JL, Coate B, Cantillon M, Jacobi L, Nunez R, Norton JC, Abler V. An open-label, 8-week study of safety and efficacy of pimavanserin treatment in adults with Parkinson's disease and depression. J Parkinsons Dis. 2020;10:1751–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Demir R, Leuwer M, de la Roche J, Krampfl K, Foadi N, Karst M, Dengler R, Haeseler G, Ahrens J. Modulation of glycine receptor function by the synthetic cannabinoid HU210. Pharmacology. 2009;83:270–4.

    CAS  PubMed  Google Scholar 

  36. Do Y, McKallip RJ, Nagarkatti M, Nagarkatti PS. Activation through cannabinoid receptors 1 and 2 on dendritic cells triggers NF-kappaB-dependent apoptosis: novel role for endogenous and exogenous cannabinoids in immunoregulation. J Immunol. 2004;173:2373–82.

    CAS  PubMed  Google Scholar 

  37. Emery SM, Alotaibi MR, Tao Q, Selley DE, Lichtman AH, Gewirtz DA. Combined antiproliferative effects of the aminoalkylindole WIN55,212-2 and radiation in breast cancer cells. J Pharmacol Exp Ther. 2014;348:293–302.

    PubMed  PubMed Central  Google Scholar 

  38. Erratico C, Negreira N, Norouzizadeh H, Covaci A, Neels H, Maudens K, van Nuijs AL. In vitro and in vivo human metabolism of the synthetic cannabinoid AB-CHMINACA. Drug Test Anal. 2015;7:866–76.

    CAS  PubMed  Google Scholar 

  39. Escelsior A, Belvederi Murri M, Corsini GP, Serafini G, Aguglia A, Zampogna D, Cattedra S, Nebbia J, Trabucco A, Prestia D, Olcese M, Barletta E, Pereira da Silva B, Amore M. Cannabinoid use and self-injurious behaviours: a systematic review and meta-analysis. J Affect Disord. 2020;278:85–98.

    PubMed  Google Scholar 

  40. Fan F, Compton DR, Ward S, Melvin L, Martin BR. Development of cross-tolerance between delta 9-tetrahydrocannabinol, CP 55,940 and WIN 55,212. J Pharmacol Exp Ther. 1994;271:1383–90.

    CAS  PubMed  Google Scholar 

  41. Fantegrossi WE, Moran JH, Radominska-Pandya A, Prather PL. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Delta(9)-THC: mechanism underlying greater toxicity? Life Sci. 2014;97:45–54.

    CAS  PubMed  Google Scholar 

  42. Fantegrossi WE, Wilson CD, Berquist MD. Pro-psychotic effects of synthetic cannabinoids: interactions with central dopamine, serotonin, and glutamate systems. Drug Metab Rev. 2018;50:65–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fattore L, Cossu G, Martellotta CM, Fratta W. Intravenous self-administration of the cannabinoid CB1 receptor agonist WIN 55,212-2 in rats. Psychopharmacology. 2001;156:410–6.

    CAS  PubMed  Google Scholar 

  44. Fattore L, Fratta W. Beyond THC: the new generation of cannabinoid designer drugs. Front Behav Neurosci. 2011;5:60.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Felder CC, Joyce KE, Briley EM, Mansouri J, Mackie K, Blond O, Lai Y, Ma AL, Mitchell RL. Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol Pharmacol. 1995;48:443–50.

    CAS  PubMed  Google Scholar 

  46. Ferrari F, Ottani A, Giuliani D. Cannabimimetic activity in rats and pigeons of HU 210, a potent antiemetic drug. Pharmacol Biochem Behav. 1999;62:75–80.

    CAS  PubMed  Google Scholar 

  47. Ford BM, Tai S, Fantegrossi WE, Prather PL. Synthetic pot: not your grandfather's marijuana. Trends Pharmacol Sci. 2017;38:257–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ford RD, Balster RL, Dewey WL, Beckner JS. Delta 9-THC and 11-OH-delta 9-THC: behavioral effects and relationship to plasma and brain levels. Life Sci. 1977;20:1993–2003.

    CAS  PubMed  Google Scholar 

  49. Foti F, Sica S, Alma E, De Cristofaro R, Mores N, Vetrugno G. Sudden nasal bleeding and brodifacoum: a case of accidental exposure or attempted homicide? Leg Med (Tokyo). 2020;47:101772.

    CAS  Google Scholar 

  50. Fraguas-Sanchez AI, Fernandez-Carballido A, Torres-Suarez AI. Phyto-, endo- and synthetic cannabinoids: promising chemotherapeutic agents in the treatment of breast and prostate carcinomas. Expert Opin Investig Drugs. 2016;25:1311–23.

    CAS  PubMed  Google Scholar 

  51. Franklin A, Parmentier-Batteur S, Walter L, Greenberg DA, Stella N. Palmitoylethanolamide increases after focal cerebral ischemia and potentiates microglial cell motility. J Neurosci. 2003;23:7767–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Franklin AB, Carlson PC, Rex A, Rockweit JT, Garza D, Culhane E, Volker SF, Dusek RJ, Shearn-Bochsler VI, Gabriel MW, Horak KE. Grass is not always greener: rodenticide exposure of a threatened species near marijuana growing operations. BMC Res Notes. 2018;11:94.

    PubMed  PubMed Central  Google Scholar 

  53. Funada M, Takebayashi-Ohsawa M. Synthetic cannabinoid AM2201 induces seizures: involvement of cannabinoid CB1 receptors and glutamatergic transmission. Toxicol Appl Pharmacol. 2018;338:1–8.

    CAS  PubMed  Google Scholar 

  54. Ghisleni G, Kazlauckas V, Both FL, Pagnussat N, Mioranzza S, Rocha JB, Souza DO, Porciuncula LO. Diphenyl diselenide exerts anxiolytic-like effect in Wistar rats: putative roles of GABAA and 5HT receptors. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32:1508–15.

    CAS  Google Scholar 

  55. Greish K, Mathur A, Al Zahrani R, Elkaissi S, Al Jishi M, Nazzal O, Taha S, Pittala V, Taurin S. Synthetic cannabinoids nano-micelles for the management of triple negative breast cancer. J Control Release. 2018;291:184–95.

    CAS  PubMed  Google Scholar 

  56. Griffiths P, Sedefov R, Gallegos A, Lopez D. How globalization and market innovation challenge how we think about and respond to drug use: 'Spice' a case study. Addiction. 2010;105:951–3.

    PubMed  Google Scholar 

  57. Grim TW, Samano KL, Ignatowska-Jankowska B, Tao Q, Sim-Selly LJ, Selley DE, Wise LE, Poklis A, Lichtman AH. Pharmacological characterization of repeated administration of the first generation abused synthetic cannabinoid CP47,497. J Basic Clin Physiol Pharmacol. 2016;27:217–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hancox JC, James AF. Refining insights into high-affinity drug binding to the human ether-a-go-go-related gene potassium channel. Mol Pharmacol. 2008;73:1592–5.

    CAS  PubMed  Google Scholar 

  59. Hancox JC, McPate MJ, El Harchi A, Zhang YH. The hERG potassium channel and hERG screening for drug-induced torsades de pointes. Pharmacol Ther. 2008;119:118–32.

    CAS  PubMed  Google Scholar 

  60. Hart S, Fischer OM, Ullrich A. Cannabinoids induce cancer cell proliferation via tumor necrosis factor alpha-converting enzyme (TACE/ADAM17)-mediated transactivation of the epidermal growth factor receptor. Cancer Res. 2004;64:1943–50.

    CAS  PubMed  Google Scholar 

  61. Hess C, Schoeder CT, Pillaiyar T, Madea B, Muller CE. Pharmacological evaluation of synthetic cannabinoids identified as constituents of spice. Forensic Toxicol. 2016;34:329–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hinz B, Ramer R. Anti-tumour actions of cannabinoids. Br J Pharmacol. 2019;176:1384–94.

    CAS  PubMed  Google Scholar 

  63. Hobbs M, Patel R, Morrison PD, Kalk N, Stone JM. Synthetic cannabinoid use in psychiatric patients and relationship to hospitalisation: a retrospective electronic case register study. J Psychopharmacol. 2020;34:648–53.

    PubMed  PubMed Central  Google Scholar 

  64. Hruba L, McMahon LR. The cannabinoid agonist HU-210: pseudo-irreversible discriminative stimulus effects in rhesus monkeys. Eur J Pharmacol. 2014;727:35–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hruba L, McMahon LR. Apparent affinity estimates and reversal of the effects of synthetic cannabinoids AM-2201, CP-47,497, JWH-122, and JWH-250 by rimonabant in rhesus monkeys. J Pharmacol Exp Ther. 2017;362:278–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hsieh C, Brown S, Derleth C, Mackie K. Internalization and recycling of the CB1 cannabinoid receptor. J Neurochem. 1999;73:493–501.

    CAS  PubMed  Google Scholar 

  67. Hutchison RD, Ford BM, Franks LN, Wilson CD, Yarbrough AL, Fujiwara R, Su MK, Fernandez D, James LP, Moran JH, Patton AL, Fantegrossi WE, Radominska-Pandya A, Prather PL. Atypical pharmacodynamic properties and metabolic profile of the abused synthetic cannabinoid AB-PINACA: potential contribution to pronounced adverse effects relative to delta(9)-THC. Front Pharmacol. 2018;9:1084.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jaenicke NJ, Pogoda W, Paulke A, Wunder C, Toennes SW. Retrospective analysis of synthetic cannabinoids in serum samples–epidemiology and consumption patterns. Forensic Sci Int. 2014;242:81–7.

    CAS  PubMed  Google Scholar 

  69. Jin MJ, Lee J, In MK, Yoo HH. Characterization of in vitro metabolites of CP 47,497, a synthetic cannabinoid, in human liver microsomes by LC-MS/MS. J Forensic Sci. 2013;58:195–9.

    CAS  PubMed  Google Scholar 

  70. Kaur R, Ambwani SR, Singh S. Endocannabinoid system: a multi-facet therapeutic target. Curr Clin Pharmacol. 2016;11:110–7.

    CAS  PubMed  Google Scholar 

  71. Kazory A, Aiyer R. Synthetic marijuana and acute kidney injury: an unforeseen association. Clin Kidney J. 2013;6:330–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Keresztes A, Streicher JM. Synergistic interaction of the cannabinoid and death receptor systems – a potential target for future cancer therapies? FEBS Lett. 2017;591:3235–51.

    CAS  PubMed  Google Scholar 

  73. Khan MI, Sobocinska AA, Brodaczewska KK, Zielniok K, Gajewska M, Kieda C, Czarnecka AM, Szczylik C. Involvement of the CB2 cannabinoid receptor in cell growth inhibition and G0/G1 cell cycle arrest via the cannabinoid agonist WIN 55,212-2 in renal cell carcinoma. BMC Cancer. 2018;18:583.

    PubMed  PubMed Central  Google Scholar 

  74. Kim JH, Kwon SS, Kong TY, Cheong JC, Kim HS, In MK, Lee HS. AM-2201 inhibits multiple cytochrome P450 and uridine 5'-diphospho-glucuronosyltransferase enzyme activities in human liver microsomes. Molecules. 2017;22

    Google Scholar 

  75. Kim S, Choi WG, Kwon M, Lee S, Cho YY, Lee JY, Kang HC, Song IS, Lee HS. In vitro inhibitory effects of APINACA on human major cytochrome P450, UDP-glucuronosyltransferase enzymes, and drug transporters. Molecules. 2019;24

    Google Scholar 

  76. Klein Nulent TJ, Van Diest PJ, van der Groep P, Leusink FK, Kruitwagen CL, Koole R, Van Cann EM. Cannabinoid receptor-2 immunoreactivity is associated with survival in squamous cell carcinoma of the head and neck. Br J Oral Maxillofac Surg. 2013;51:604–9.

    PubMed  Google Scholar 

  77. Kong TY, Kim JH, Kim DK, Lee HS. Synthetic cannabinoids are substrates and inhibitors of multiple drug-metabolizing enzymes. Arch Pharm Res. 2018;41:691–710.

    CAS  PubMed  Google Scholar 

  78. Kong TY, Kwon SS, Cheong JC, Kim HS, Kim JY, Lee HS. In vitro inhibitory effects of synthetic cannabinoid EAM-2201 on cytochrome P450 and UDP-glucuronosyltransferase enzyme activities in human liver microsomes. Molecules. 2018;23

    Google Scholar 

  79. Lapoint J, James LP, Moran CL, Nelson LS, Hoffman RS, Moran JH. Severe toxicity following synthetic cannabinoid ingestion. Clin Toxicol (Phila). 2011;49:760–4.

    CAS  Google Scholar 

  80. Macfarlane V, Christie G. Synthetic cannabinoid withdrawal: a new demand on detoxification services. Drug Alcohol Rev. 2015;34:147–53.

    PubMed  Google Scholar 

  81. Maldonado R, Rodriguez de Fonseca F. Cannabinoid addiction: behavioral models and neural correlates. J Neurosci. 2002;22:3326–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Martellotta MC, Cossu G, Fattore L, Gessa GL, Fratta W. Self-administration of the cannabinoid receptor agonist WIN 55,212-2 in drug-naive mice. Neuroscience. 1998;85:327–30.

    CAS  PubMed  Google Scholar 

  83. Martinez-Martinez E, Gomez I, Martin P, Sanchez A, Roman L, Tejerina E, Bonilla F, Merino AG, de Herreros AG, Provencio M, Garcia JM. Cannabinoids receptor type 2, CB2, expression correlates with human colon cancer progression and predicts patient survival. Onco Targets Ther. 2015;2:131–41.

    Google Scholar 

  84. Marusich JA, Wiley JL, Lefever TW, Patel PR, Thomas BF. Finding order in chemical chaos – continuing characterization of synthetic cannabinoid receptor agonists. Neuropharmacology. 2018;134:73–81.

    CAS  PubMed  Google Scholar 

  85. Mercolini L, Protti M. Biosampling strategies for emerging drugs of abuse: towards the future of toxicological and forensic analysis. J Pharm Biomed Anal. 2016;130:202–19.

    CAS  PubMed  Google Scholar 

  86. Michalski CW, Oti FE, Erkan M, Sauliunaite D, Bergmann F, Pacher P, Batkai S, Muller MW, Giese NA, Friess H, Kleeff J. Cannabinoids in pancreatic cancer: correlation with survival and pain. Int J Cancer. 2008;122:742–50.

    PubMed  PubMed Central  Google Scholar 

  87. Monte AA, Calello DP, Gerona RR, Hamad E, Campleman SL, Brent J, Wax P, Carlson RG, Acmt Toxicology Investigators Consortium. Characteristics and treatment of patients with clinical illness due to synthetic cannabinoid inhalation reported by medical toxicologists: a ToxIC database study. J Med Toxicol. 2017;13:146–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Morales P, Blasco-Benito S, Andradas C, Gomez-Canas M, Flores JM, Goya P, Fernandez-Ruiz J, Sanchez C, Jagerovic N. Selective, nontoxic CB(2) cannabinoid o-quinone with in vivo activity against triple-negative breast cancer. J Med Chem. 2015;58:2256–64.

    CAS  PubMed  Google Scholar 

  89. Morgan D, Kondabolu K, Kuipers A, Sakhuja R, Robertson KL, Rowland NE, Booth RG. Molecular and behavioral pharmacology of two novel orally-active 5HT2 modulators: potential utility as antipsychotic medications. Neuropharmacology. 2013;72:274–81.

    CAS  PubMed  Google Scholar 

  90. Muller H, Sperling W, Kohrmann M, Huttner HB, Kornhuber J, Maler JM. The synthetic cannabinoid spice as a trigger for an acute exacerbation of cannabis induced recurrent psychotic episodes. Schizophr Res. 2010;118:309–10.

    PubMed  Google Scholar 

  91. Muller L, Radtke A, Decker J, Koch M, Belge G. The synthetic cannabinoid WIN 55,212-2 elicits death in human cancer cell lines. Anticancer Res. 2017;37:6341–5.

    PubMed  Google Scholar 

  92. Muneta-Arrate I, Diez-Alarcia R, Horrillo I, Meana JJ. Pimavanserin exhibits serotonin 5-HT2A receptor inverse agonism for Galphai1- and neutral antagonism for Galphaq/11-proteins in human brain cortex. Eur Neuropsychopharmacol. 2020;36:83–9.

    CAS  PubMed  Google Scholar 

  93. Nacca N, Vatti D, Sullivan R, Sud P, Su M, Marraffa J. The synthetic cannabinoid withdrawal syndrome. J Addict Med. 2013;7:296–8.

    CAS  PubMed  Google Scholar 

  94. Naccarato M, Pizzuti D, Petrosino S, Simonetto M, Ferigo L, Grandi FC, Pizzolato G, Di Marzo V. Possible anandamide and palmitoylethanolamide involvement in human stroke. Lipids Health Dis. 2010;9:47. https://doi.org/10.1186/1476-511X-9-47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nithipatikom K, Isbell MA, Endsley MP, Woodliff JE, Campbell WB. Anti-proliferative effect of a putative endocannabinoid, 2-arachidonylglyceryl ether in prostate carcinoma cells. Prostaglandins Other Lipid Mediat. 2011;94:34–43.

    CAS  PubMed  Google Scholar 

  96. Oh JH, Lee JY, Baeg MK, Han KH, Choi MG, Park JM. Antineoplastic effect of WIN 55,212-2, a cannabinoid agonist, in a murine xenograft model of gastric cancer. Chemotherapy. 2013;59:200–6.

    CAS  PubMed  Google Scholar 

  97. Olea-Herrero N, Vara D, Malagarie-Cazenave S, Diaz-Laviada I. Inhibition of human tumour prostate PC-3 cell growth by cannabinoids R(+)-Methanandamide and JWH-015: involvement of CB2. Br J Cancer. 2009;101:940–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ortega A, Garcia-Hernandez VM, Ruiz-Garcia E, Meneses-Garcia A, Herrera-Gomez A, Aguilar-Ponce JL, Montes-Servin E, Prospero-Garcia O, Del Angel SA. Comparing the effects of endogenous and synthetic cannabinoid receptor agonists on survival of gastric cancer cells. Life Sci. 2016;165:56–62.

    CAS  PubMed  Google Scholar 

  99. Ossato A, Vigolo A, Trapella C, Seri C, Rimondo C, Serpelloni G, Marti M. JWH-018 impairs sensorimotor functions in mice. Neuroscience. 2015;300:174–88.

    CAS  PubMed  Google Scholar 

  100. Pant S, Deshmukh A, Dholaria B, Kaur V, Ramavaram S, Ukor M, Teran GA. Spicy seizure. Am J Med Sci. 2012;344:67–8.

    PubMed  Google Scholar 

  101. Patel KD, Davison JS, Pittman QJ, Sharkey KA. Cannabinoid CB(2) receptors in health and disease. Curr Med Chem. 2010;17:1393–410.

    PubMed  Google Scholar 

  102. Patsos HA, Hicks DJ, Greenhough A, Williams AC, Paraskeva C. Cannabinoids and cancer: potential for colorectal cancer therapy. Biochem Soc Trans. 2005;33:712–4.

    CAS  PubMed  Google Scholar 

  103. Patton AL, Seely KA, Chimalakonda KC, Tran JP, Trass M, Miranda A, Fantegrossi WE, Kennedy PD, Dobrowolski P, Radominska-Pandya A, McCain KR, James LP, Endres GW, Moran JH. Targeted metabolomic approach for assessing human synthetic cannabinoid exposure and pharmacology. Anal Chem. 2013;85:9390–9.

    CAS  PubMed  Google Scholar 

  104. Patton AL, Seely KA, Yarbrough AL, Fantegrossi W, James LP, McCain KR, Fujiwara R, Prather PL, Moran JH, Radominska-Pandya A. Altered metabolism of synthetic cannabinoid JWH-018 by human cytochrome P450 2C9 and variants. Biochem Biophys Res Commun. 2018;498:597–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Paul ABM, Simms L, Amini S, Paul AE. Teens and spice: a review of adolescent fatalities associated with synthetic cannabinoid use. J Forensic Sci. 2018;63:1321–4.

    CAS  PubMed  Google Scholar 

  106. Petrosino S, Ménard B, Zsürger N, Di Marzo V, Chabry J. Alteration of the endocannabinoid system in mouse brain during prion disease. Neuroscience. 2011;177:292–7.

    CAS  PubMed  Google Scholar 

  107. Petrosino S, Palazzo E, de Novellis V, Bisogno T, Rossi F, Maione S, Di Marzo V. Changes in spinal and supraspinal endocannabinoid levels in neuropathic rats. Neuropharmacology. 2007;52:415–22.

    CAS  PubMed  Google Scholar 

  108. Petrosino S, Di Marzo V. The pharmacology of palmitoylethanolamide and first data on the therapeutic efficacy of some of its new formulations. Br J Pharmacol. 2017;174:1349–65.

    CAS  PubMed  Google Scholar 

  109. Presley BC, Jansen-Varnum SA, Logan BK. Analysis of synthetic cannabinoids in botanical material: a review of analytical methods and findings. Forensic Sci Rev. 2013;25:27–46.

    CAS  PubMed  Google Scholar 

  110. Qamri Z, Preet A, Nasser MW, Bass CE, Leone G, Barsky SH, Ganju RK. Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol Cancer Ther. 2009;8:3117–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ramer R, Hinz B. Cannabinoids as anticancer drugs. Adv Pharmacol. 2017;80:397–436.

    CAS  PubMed  Google Scholar 

  112. Ramos JA, Bianco FJ. The role of cannabinoids in prostate cancer: basic science perspective and potential clinical applications. Indian J Urol. 2012;28:9–14.

    PubMed  PubMed Central  Google Scholar 

  113. Roberto D, Klotz LH, Venkateswaran V. Cannabinoid WIN 55,212-2 induces cell cycle arrest and apoptosis, and inhibits proliferation, migration, invasion, and tumor growth in prostate cancer in a cannabinoid-receptor 2 dependent manner. Prostate. 2019;79:151–9.

    CAS  PubMed  Google Scholar 

  114. Robson H, Braund R, Glass M, Ashton J, Tatley M. Synthetic cannabis: adverse events reported to the New Zealand Pharmacovigilance Centre. Clin Toxicol (Phila). 2020:1–8.

    Google Scholar 

  115. Ross CH, Singh P, Simon EL. Hemorrhagic soft tissue upper airway obstruction from brodifacoum-contaminated synthetic cannabinoid. J Emerg Med. 2019;57:47–50.

    PubMed  Google Scholar 

  116. Sanchez C, Galve-Roperh I, Canova C, Brachet P, Guzman M. Delta9-tetrahydrocannabinol induces apoptosis in C6 glioma cells. FEBS Lett. 1998;436:6–10.

    CAS  PubMed  Google Scholar 

  117. Sarfaraz S, Afaq F, Adhami VM, Malik A, Mukhtar H. Cannabinoid receptor agonist-induced apoptosis of human prostate cancer cells LNCaP proceeds through sustained activation of ERK1/2 leading to G1 cell cycle arrest. J Biol Chem. 2006;281:39480–91.

    CAS  PubMed  Google Scholar 

  118. Seely KA, Brents LK, Radominska-Pandya A, Endres GW, Keyes GS, Moran JH, Prather PL. A major glucuronidated metabolite of JWH-018 is a neutral antagonist at CB1 receptors. Chem Res Toxicol. 2012;25:825–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Seely KA, Patton AL, Moran CL, Womack ML, Prather PL, Fantegrossi WE, Radominska-Pandya A, Endres GW, Channell KB, Smith NH, McCain KR, James LP, Moran JH. Forensic investigation of K2, Spice, and "bath salt" commercial preparations: a three-year study of new designer drug products containing synthetic cannabinoid, stimulant, and hallucinogenic compounds. Forensic Sci Int. 2013;233:416–22.

    CAS  PubMed  Google Scholar 

  120. Seely KA, Prather PL, James LP, Moran JH. Marijuana-based drugs: innovative therapeutics or designer drugs of abuse? Mol Interv. 2011;11:36–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Showalter VM, Compton DR, Martin BR, Abood ME. Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB2): identification of cannabinoid receptor subtype selective ligands. J Pharmacol Exp Ther. 1996;278:989–99.

    CAS  PubMed  Google Scholar 

  122. Skryabin VY, Vinnikova MA. Psychotic disorders in patients who use synthetic cannabinoids. J Psychiatr Pract. 2019;25:485–90.

    PubMed  Google Scholar 

  123. Sugiura T, Oka S, Gokoh M, Kishimoto S, Waku K. New perspectives in the studies on endocannabinoid and cannabis: 2-arachidonoylglycerol as a possible novel mediator of inflammation. J Pharmacol Sci. 2004;96:367–75.

    CAS  PubMed  Google Scholar 

  124. Sweeney B, Talebi S, Toro D, Gonzalez K, Menoscal JP, Shaw R, Hassen GW. Hyperthermia and severe rhabdomyolysis from synthetic cannabinoids. Am J Emerg Med. 2016;34(121):e1–2.

    Google Scholar 

  125. Tai S, Fantegrossi WE. Pharmacological and toxicological effects of synthetic cannabinoids and their metabolites. Curr Top Behav Neurosci. 2017;32:249–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Tai S, Hyatt WS, Gu C, Franks LN, Vasiljevik T, Brents LK, Prather PL, Fantegrossi WE. Repeated administration of phytocannabinoid Delta(9)-THC or synthetic cannabinoids JWH-018 and JWH-073 induces tolerance to hypothermia but not locomotor suppression in mice, and reduces CB1 receptor expression and function in a brain region-specific manner. Pharmacol Res. 2015;102:22–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Thakur GA, Nikas SP, Makriyannis A. CB1 cannabinoid receptor ligands. Mini Rev Med Chem. 2005;5:631–40.

    CAS  PubMed  Google Scholar 

  128. Thapa D, Lee JS, Heo SW, Lee YR, Kang KW, Kwak MK, Choi HG, Kim JA. Novel hexahydrocannabinol analogs as potential anti-cancer agents inhibit cell proliferation and tumor angiogenesis. Eur J Pharmacol. 2011;650:64–71.

    CAS  PubMed  Google Scholar 

  129. Toennes SW, Geraths A, Pogoda W, Paulke A, Wunder C, Theunissen EL, Ramaekers JG. Pharmacokinetic properties of the synthetic cannabinoid JWH-018 in oral fluid after inhalation. Drug Test Anal. 2018;10:644–50.

    CAS  PubMed  Google Scholar 

  130. Vigolo A, Ossato A, Trapella C, Vincenzi F, Rimondo C, Seri C, Varani K, Serpelloni G, Marti M. Novel halogenated derivates of JWH-018: behavioral and binding studies in mice. Neuropharmacology. 2015;95:68–82.

    CAS  PubMed  Google Scholar 

  131. Vincenzi F, Targa M, Corciulo C, Tabrizi MA, Merighi S, Gessi S, Saponaro G, Baraldi PG, Borea PA, Varani K. Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models. Pain. 2013;154:864–73.

    CAS  PubMed  Google Scholar 

  132. Wiley JL, Lefever TW, Marusich JA, Grabenauer M, Moore KN, Huffman JW, Thomas BF. Evaluation of first generation synthetic cannabinoids on binding at non-cannabinoid receptors and in a battery of in vivo assays in mice. Neuropharmacology. 2016;110:143–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Wiley JL, Marusich JA, Lefever TW, Antonazzo KR, Wallgren MT, Cortes RA, Patel PR, Grabenauer M, Moore KN, Thomas BF. AB-CHMINACA, AB-PINACA, and FUBIMINA: affinity and potency of novel synthetic cannabinoids in producing delta9-tetrahydrocannabinol-like effects in mice. J Pharmacol Exp Ther. 2015;354:328–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Xian S, Parayath NN, Nehoff H, Giles NM, Greish K. The use of styrene maleic acid nanomicelles encapsulating the synthetic cannabinoid analog WIN55,212-2 for the treatment of cancer. Anticancer Res. 2015;35:4707–12.

    PubMed  Google Scholar 

  135. Xian XS, Park H, Cho YK, Lee IS, Kim SW, Choi MG, Chung IS, Han KH, Park JM. Effect of a synthetic cannabinoid agonist on the proliferation and invasion of gastric cancer cells. J Cell Biochem. 2010;110:321–32.

    CAS  PubMed  Google Scholar 

  136. Xu D, Wang J, Zhou Z, He Z, Zhao Q. Cannabinoid WIN55, 212-2 induces cell cycle arrest and inhibits the proliferation and migration of human BEL7402 hepatocellular carcinoma cells. Mol Med Rep. 2015;12:7963–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Yeruva RR, Mekala HM, Sidhu M, Lippmann S. Synthetic cannabinoids-"spice" can induce a psychosis: a brief review. Innov Clin Neurosci. 2019;16:31–2.

    PubMed  PubMed Central  Google Scholar 

  138. You Y, Proctor RM, Vasilko ED, Robinson MA. Doping control analysis of four JWH-250 metabolites in equine urine by liquid chromatography-tandem mass spectrometry. Drug Test Anal. 2019;11:649–58.

    CAS  PubMed  Google Scholar 

  139. Zimmermann US, Winkelmann PR, Pilhatsch M, Nees JA, Spanagel R, Schulz K. Withdrawal phenomena and dependence syndrome after the consumption of "spice gold". Dtsch Arztebl Int. 2009;106:464–7.

    PubMed  PubMed Central  Google Scholar 

  140. Zogopoulos P, Korkolopoulou P, Patsouris E, Theocharis S. The antitumor action of cannabinoids on glioma tumorigenesis. Histol Histopathol. 2015;30:629–45.

    CAS  PubMed  Google Scholar 

  141. Zuba D, Byrska B, Maciow M. Comparison of "herbal highs" composition. Anal Bioanal Chem. 2011;400:119–26.

    CAS  PubMed  Google Scholar 

References (Palmitoylethanolamide Pharmacology Efficacy and Safety)

  1. Artukoglu BB, Beyer C, Zuloff-Shani A, Brener E, Bloch MH. Efficacy of palmitoylethanolamide for pain: a meta-analysis. Pain Physician. 2017;20:353–62.

    PubMed  Google Scholar 

  2. Cantarella G, Scollo M, Lempereur L, Saccani-Jotti G, Basile F, Bernardini R. Endocannabinoids inhibit release of nerve growth factor by inflammation-activated mast cells. Biochem Pharmacol. 2011;82:380–8.

    CAS  PubMed  Google Scholar 

  3. Chiurchiu V, Leuti A, Smoum R, Mechoulam R, Maccarrone M. Bioactive lipids ALIAmides differentially modulate inflammatory responses of distinct subsets of primary human T lymphocytes. FASEB J. 2018;32:5716–23.

    CAS  PubMed  Google Scholar 

  4. Cruccu G, Stefano GD, Marchettini P, Truini A. Micronized palmitoylethanolamide: a post hoc analysis of a controlled study in patients with low back pain – sciatica. CNS Neurol Disord Drug Targets. 2019;18:491–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. D'Amico R, Impellizzeri D, Cuzzocrea S, Di Paola R. ALIAmides update: palmitoylethanolamide and its formulations on management of peripheral neuropathic pain. Int J Mol Sci. 2020;21

    Google Scholar 

  6. De Filippis D, Negro L, Vaia M, Cinelli MP, Iuvone T. New insights in mast cell modulation by palmitoylethanolamide. CNS Neurol Disord Drug Targets. 2013;12:78–83.

    PubMed  Google Scholar 

  7. De Petrocellis L, Davis JB, Di Marzo V. Palmitoylethanolamide enhances anandamide stimulation of human vanilloid VR1 receptors. FEBS Lett. 2001;506:253–6.

    PubMed  Google Scholar 

  8. di Marzo V, Skaper SD. Palmitoylethanolamide: biochemistry, pharmacology and therapeutic use of a pleiotropic anti-inflammatory lipid mediator. CNS Neurol Disord Drug Targets. 2013;12:4–6.

    PubMed  Google Scholar 

  9. Gabrielsson L, Mattsson S, Fowler CJ. Palmitoylethanolamide for the treatment of pain: pharmacokinetics, safety and efficacy. Br J Clin Pharmacol. 2016;82:932–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Grillo SL, Keereetaweep J, Grillo MA, Chapman KD, Koulen P. N-Palmitoylethanolamine depot injection increased its tissue levels and those of other acylethanolamide lipids. Drug Des Devel Ther. 2013;7:747–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Guida F, Luongo L, Boccella S, Giordano ME, Romano R, Bellini G, Manzo I, Furiano A, Rizzo A, Imperatore R, Iannotti FA, D'Aniello E, Piscitelli F, Sca Rossi F, Cristino L, Di Marzo V, de Novellis V, Maione S. Palmitoylethanolamide induces microglia changes associated with increased migration and phagocytic activity: involvement of the CB2 receptor. Sci Rep. 2017;7:375.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hesselink JM. Evolution in pharmacologic thinking around the natural analgesic palmitoylethanolamide: from nonspecific resistance to PPAR-alpha agonist and effective nutraceutical. J Pain Res. 2013;6:625–34.

    PubMed  PubMed Central  Google Scholar 

  13. Hesselink JM, Hekker TA. Therapeutic utility of palmitoylethanolamide in the treatment of neuropathic pain associated with various pathological conditions: a case series. J Pain Res. 2012;5:437–42.

    PubMed  PubMed Central  Google Scholar 

  14. Ho WS, Barrett DA, Randall MD. Entourage' effects of N-palmitoylethanolamide and N-oleoylethanolamide on vasorelaxation to anandamide occur through TRPV1 receptors. Br J Pharmacol. 2008;155:837–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Impellizzeri D, Bruschetta G, Cordaro M, Crupi R, Siracusa R, Esposito E, Cuzzocrea S. Micronized/ultramicronized palmitoylethanolamide displays superior oral efficacy compared to nonmicronized palmitoylethanolamide in a rat model of inflammatory pain. J Neuroinflammation. 2014;11:136.

    PubMed  PubMed Central  Google Scholar 

  16. Ji RR, Chamessian A, Zhang YQ. Pain regulation by non-neuronal cells and inflammation. Science. 2016;354:572–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Leleux J, Williams RO 3rd. Recent advancements in mechanical reduction methods: particulate systems. Drug Dev Ind Pharm. 2014;40:289–300.

    CAS  PubMed  Google Scholar 

  18. Morsanuto V, Galla R, Molinari C, Uberti F. A new palmitoylethanolamide form combined with antioxidant molecules to improve its effectivess on neuronal aging. Brain Sci. 2020;10

    Google Scholar 

  19. Nestmann ER. Safety of micronized palmitoylethanolamide (microPEA): lack of toxicity and genotoxic potential. Food Sci Nutr. 2017;5:292–309.

    CAS  PubMed  Google Scholar 

  20. Paladini A, Fusco M, Cenacchi T, Schievano C, Piroli A, Varrassi G. Palmitoylethanolamide, a special food for medical purposes, in the treatment of chronic pain: a pooled data meta-analysis. Pain Physician. 2016;19:11–24.

    PubMed  Google Scholar 

  21. Petrosino S, Cordaro M, Verde R, Schiano Moriello A, Marcolongo G, Schievano C, Siracusa R, Piscitelli F, Peritore AF, Crupi R, Impellizzeri D, Esposito E, Cuzzocrea S, Di Marzo V. Oral ultramicronized palmitoylethanolamide: plasma and tissue levels and spinal anti-hyperalgesic effect. Front Pharmacol. 2018;9:249.

    PubMed  PubMed Central  Google Scholar 

  22. Petrosino S, Schiano Moriello A, Cerrato S, Fusco M, Puigdemont A, De Petrocellis L, Di Marzo V. The anti-inflammatory mediator palmitoylethanolamide enhances the levels of 2-arachidonoyl-glycerol and potentiates its actions at TRPV1 cation channels. Br J Pharmacol. 2016;173:1154–62.

    CAS  PubMed  Google Scholar 

  23. Petrosino S, Schiano Moriello A, Verde R, Allara M, Imperatore R, Ligresti A, Mahmoud AM, Peritore AF, Iannotti FA, Di Marzo V. Palmitoylethanolamide counteracts substance P-induced mast cell activation in vitro by stimulating diacylglycerol lipase activity. J Neuroinflammation. 2019;16:274.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ribeiro A, Pontis S, Mengatto L, Armirotti A, Chiurchiu V, Capurro V, Fiasella A, Nuzzi A, Romeo E, Moreno-Sanz G, Maccarrone M, Reggiani A, Tarzia G, Mor M, Bertozzi F, Bandiera T, Piomelli D. A potent systemically active N-acylethanolamine acid amidase inhibitor that suppresses inflammation and human macrophage activation. ACS Chem Biol. 2015;10:1838–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schmid PC, Krebsbach RJ, Perry SR, Dettmer TM, Maasson JL, Schmid HH. Occurrence and postmortem generation of anandamide and other long-chain N-acylethanolamines in mammalian brain. FEBS Lett. 1995;375:117–20.

    CAS  PubMed  Google Scholar 

  26. Scuderi C, Esposito G, Blasio A, Valenza M, Arietti P, Steardo L Jr, Carnuccio R, De Filippis D, Petrosino S, Iuvone T, Di Marzo V, Steardo L. Palmitoylethanolamide counteracts reactive astrogliosis induced by beta-amyloid peptide. J Cell Mol Med. 2011;15:2664–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Siracusa R, Impellizzeri D, Cordaro M, Crupi R, Esposito E, Petrosino S, Cuzzocrea S. Anti-inflammatory and neuroprotective effects of co-UltraPEALut in a mouse model of vascular dementia. Front Neurol. 2017;8:233.

    PubMed  PubMed Central  Google Scholar 

  28. Skaper SD, Facci L, Barbierato M, Zusso M, Bruschetta G, Impellizzeri D, Cuzzocrea S, Giusti P. N-palmitoylethanolamine and neuroinflammation: a novel therapeutic strategy of resolution. Mol Neurobiol. 2015;52:1034–42.

    CAS  PubMed  Google Scholar 

  29. Smart D, Jonsson KO, Vandevoorde S, Lambert DM, Fowler CJ. 'Entourage' effects of N-acyl ethanolamines at human vanilloid receptors. Comparison of effects upon anandamide-induced vanilloid receptor activation and upon anandamide metabolism. Br J Pharmacol. 2002;136:452–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vacondio F, Bassi M, Silva C, Castelli R, Carmi C, Scalvini L, Lodola A, Vivo V, Flammini L, Barocelli E, Mor M, Rivara S. Amino acid derivatives as palmitoylethanolamide prodrugs: synthesis, in vitro metabolism and In vivo plasma profile in rats. PLoS One. 2015;10:e0128699.

    PubMed  PubMed Central  Google Scholar 

  31. Wang J, Zheng J, Kulkarni A, Wang W, Garg S, Prather PL, Hauer-Jensen M. Palmitoylethanolamide regulates development of intestinal radiation injury in a mast cell-dependent manner. Dig Dis Sci. 2014;59:2693–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wellner N, Diep TA, Janfelt C, Hansen HS. N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochim Biophys Acta. 2013;1831:652–62.

    CAS  PubMed  Google Scholar 

  33. Xanthos DN, Pungel I, Wunderbaldinger G, Sandkuhler J. Effects of peripheral inflammation on the blood-spinal cord barrier. Mol Pain. 2012;8:44.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mellar P. Davis .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davis, M.P. (2022). Future Therapeutic Potential of Synthetic Cannabinoids and Endocannabinoid System Modulators. In: Cannabis and Cannabinoid-Based Medicines in Cancer Care. Springer, Cham. https://doi.org/10.1007/978-3-030-89918-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89918-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89917-2

  • Online ISBN: 978-3-030-89918-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics