Skip to main content

When Anchoring Fails: Interactive Alignment of Large Virtual Objects in Occasionally Failing AR Systems

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2021, Volume 1 (FTC 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 358))

Included in the following conference series:

Abstract

Augmented reality systems show virtual object models overlaid over real ones, which is helpful in many contexts, e.g., during maintenance. Assuming all geometry is known, misalignments in 3D poses will still occur without perfectly robust viewer and object 3D tracking. Such misalignments can impact the user experience and reduce the potential benefits associated with AR systems. In this paper, we implemented several interaction algorithms to make manual virtual object alignment easier, based on previously presented methods, such as HoverCam, SHOCam, and a Signed Distance Field. Our approach also simplifies the user interface for manual 3D pose alignment in 2D input systems. The results of our work indicate that our approach can reduce the time needed for interactive 3D pose alignment, which improves the user experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alkhamisi, A.O., Arabia, S., Monowar, M.M., et al.: Rise of augmented reality: current and future application areas. Int. J. Internet Distrib. Syst. 1(04), 25 (2013)

    Article  Google Scholar 

  2. Athalye, A., Engstrom, L., Ilyas, A., Kwok, K.: Synthesizing robust adversarial examples. In: International Conference on Machine Learning, PMLR, pp. 284–293 (2018)

    Google Scholar 

  3. Bae, H., Golparvar-Fard, M., White, J.: Image-based localization and content authoring in structure-from-motion point cloud models for real-time field reporting applications. J. Comput. Civ. Eng. 29(4), B4014008 (2015)

    Article  Google Scholar 

  4. Barill, G., Dickson, N.G., Schmidt, R., Levin, D.I.W., Jacobson, A.: Fast winding numbers for soups and clouds. ACM Trans. Graph. (TOG) 37(4), 1–12 (2018)

    Article  Google Scholar 

  5. Batmaz, A.U., Seraji, M.R., Kneifel, J., Stuerzlinger, W.: No jitter please: effects of rotational and positional jitter on 3D mid-air interaction. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) FTC 2020. AISC, vol. 1289, pp. 792–808. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-63089-8_52

    Chapter  Google Scholar 

  6. Batmaz, A.U., Stuerzlinger, W.: The effect of rotational jitter on 3D pointing tasks. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, CHI EA 2019, pp. LBW2112:1–LBW2112:6, New York (2019). ACM

    Google Scholar 

  7. Batmaz, A.U., Stuerzlinger, W.: Effects of 3D rotational jitter and selection methods on 3D pointing tasks. In: Workshop on Novel Input Devices and Interaction Techniques (NIDIT) at (IEEE) (VR) (2019), March 2019

    Google Scholar 

  8. Brilakis, I., Park, M.W., Jog, G.: Automated vision tracking of project related entities. Adv. Eng. Inf. 25(4), 713–724 (2011)

    Article  Google Scholar 

  9. Caputo, F.M., Emporio, M., Giachetti, A.: The smart pin: an effective tool for object manipulation in immersive virtual reality environments. Comput. Graph. 74, 225–233 (2018)

    Article  Google Scholar 

  10. Casiez, G., Roussel, N., Vogel, D.: 1€ filter: a simple speed-based low-pass filter for noisy input in interactive systems. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2527–2530 (2012)

    Google Scholar 

  11. Chi, S., Caldas, C.H.: Automated object identification using optical video cameras on construction sites. Comput. Aided Civ. Infrastruct. Eng. 26(5), 368–380 (2011)

    Article  Google Scholar 

  12. De Marchi, L., Ceruti, A., Testoni, N., Marzani, A., Liverani, A.: Use of augmented reality in aircraft maintenance operations. In: Health Monitoring of Structural and Biological Systems 2014, vol. 9064, pp. 906412. International Society for Optics and Photonics (2014)

    Google Scholar 

  13. Dou, Z., Gao, K., Zhang, X., Wang, H., Wang, J.: Improving performance and adaptivity of anchor-based detector using differentiable anchoring with efficient target generation. IEEE Trans. Image Process. 30, 712–724 (2020)

    Google Scholar 

  14. Eschen, H., Kötter, T., Rodeck, R., Harnisch, M., Schüppstuhl, T.: Augmented and virtual reality for inspection and maintenance processes in the aviation industry. Procedia Manuf. 19, 156–163 (2018)

    Article  Google Scholar 

  15. Frisken, S.F., Perry, R.N., Rockwood, A.P., Jones, T.R.: Adaptively sampled distance fields: A general representation of shape for computer graphics. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 249–254 (2000)

    Google Scholar 

  16. Haines, E., Hoffman, N., et al.: Real-time Rendering. CRC Press, Boca Raton (2018)

    Google Scholar 

  17. Jacobson, A., Panozzo, D., et al. Libigl: a simple C++ geometry processing library (2018). https://libigl.github.io/

  18. Khan, A., Komalo, B., Stam, J., Fitzmaurice, G., Kurtenbach, G.: Hovercam: interactive 3d navigation for proximal object inspection. In: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, pp. 73–80 (2005)

    Google Scholar 

  19. Li, Q., Mou, L., Liu, Q., Wang, Y., Zhu, X.X.: HSF-Net: multiscale deep feature embedding for ship detection in optical remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 56(12), 7147–7161 (2018)

    Article  Google Scholar 

  20. Mendes, D., Relvas, F., Ferreira, A., Jorge, J.: The benefits of dof separation in mid-air 3d object manipulation. In: Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology, pp. 261–268 (2016)

    Google Scholar 

  21. Mndes, D., Sousa, M., Lorena, R., Ferreira, A., Jorge, J.: Using custom transformation axes for mid-air manipulation of 3d virtual objects. In: Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology, pp. 27. ACM (2017)

    Google Scholar 

  22. O’Mahony, N., et al.: Deep learning vs. traditional computer vision. In: Arai, K., Kapoor, S. (eds.) CVC 2019. AISC, vol. 943, pp. 128–144. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-17795-9_10

    Chapter  Google Scholar 

  23. Ortega, M., Stuerzlinger, W., Scheurich, D.: Shocam: a 3d orbiting algorithm. In: Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, pp. 119–128 (2015)

    Google Scholar 

  24. Pai, Y.S., Chen, Z., Chan, L., Isogai, M., Kimata, H., Kunze, K.: Pinchmove: improved accuracy of user mobility for near-field navigation in virtual environments. In: Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 1–11 (2018)

    Google Scholar 

  25. Palmarini, R., Erkoyuncu, J.A., Roy, R., Torabmostaedi, H.: A systematic review of augmented reality applications in maintenance. Rob. Comput. Integr. Manuf. 49, 215–228 (2018)

    Article  Google Scholar 

  26. Park, M.W., Makhmalbaf, A., Brilakis, I.: Comparative study of vision tracking methods for tracking of construction site resources. Autom. Constr. 20(7), 905–915 (2011)

    Article  Google Scholar 

  27. Perera, S., Barnes, N., He, X., Izadi, S., Kohli, P., Glocker, B.: Motion segmentation of truncated signed distance function based volumetric surfaces. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 1046–1053. IEEE (2015)

    Google Scholar 

  28. Schwegmann, C.P., Kleynhans, W., Salmon, B.P.: Synthetic aperture radar ship detection using haar-like features. IEEE Geosci. Remote Sens. Lett. 14(2), 154–158 (2016)

    Article  Google Scholar 

  29. Teather, R.J., Pavlovych, A., Stuerzlinger, W., MacKenzie, I.S.: Effects of tracking technology, latency, and spatial jitter on object movement. In: 3D User Interfaces, 2009. 3DUI 2009. IEEE Symposium on, pp. 43–50. IEEE (2009)

    Google Scholar 

  30. Tomsett, R., et al.: Why the failure? how adversarial examples can provide insights for interpretable machine learning. In: 2018 21st International Conference on Information Fusion (FUSION), pp. 838–845. IEEE (2018)

    Google Scholar 

  31. Tumanov, A., Allison, R., Stuerzlinger, W.: Variability-aware latency amelioration in distributed environments. In: Virtual Reality Conference, VR 2007, pp. 123–130, March 2007

    Google Scholar 

  32. Wang, W., Lai, Q., Fu, H., Shen, J., Ling, H., Yang, R.: Salient object detection in the deep learning era: an in-depth survey. IEEE Trans. Pattern Anal. Mach. Intell., 1 (2021). https://doi.org/10.1109/TPAMI.2021.3051099

  33. Xu, H., Barbič, J.: Signed distance fields for polygon soup meshes. In: Graphics Interface 2014, pp. 35–41. AK Peters/CRC Press (2020)

    Google Scholar 

  34. Yu, Y., Guan, H., Li, D., Gu, T., Tang, E., Li, A.: Orientation guided anchoring for geospatial object detection from remote sensing imagery. ISPRS J. Photogrammetry Remote Sens. 160, 67–82 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Ufuk Batmaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Batmaz, A.U., Stuerzlinger, W. (2022). When Anchoring Fails: Interactive Alignment of Large Virtual Objects in Occasionally Failing AR Systems. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2021, Volume 1. FTC 2021. Lecture Notes in Networks and Systems, vol 358. Springer, Cham. https://doi.org/10.1007/978-3-030-89906-6_4

Download citation

Publish with us

Policies and ethics