Skip to main content

Crack Detection from Weld Bend Test Images Using R-CNN

  • Conference paper
  • First Online:
Advances on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 343))

Abstract

The personnel burden is an issue with the visual inspection of welding defects that occur in bend test fragments. This study aims to construct an automatic evaluation system for welding defects that occur in bend test fragments. This paper describes the automatic detection of defective areas from bend test fragments using R-CNN. First, we have described the structure of the proposed R-CNN, followed by the experiments for evaluating R-CNN and their results. Finally, we have provided a conclusion and discussed future issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niles, R.W., Jackson, C.E.: Weld thermal efficiency of the GTAW process. Weld. J. 54, 25–32 (1975)

    Google Scholar 

  2. Asai, S., Ogawa, T., Takebayashi, H.: Visualization and digitation of welder skill for education and training. Weld. World 56, 26–34 (2012)

    Article  Google Scholar 

  3. Byrd, A.P., Stone, R.T., Anderson, R.G., Woltjer, K.: The use of virtual welding simulators to evaluate experimental welders. Weld. J. 94(12), 389–395 (2015)

    Google Scholar 

  4. Hino, T., et al.: Visualization of gas tungsten arc welding skill using brightness map of backside weld pool. Trans. Mat. Res. Soc. Jpn. 44(5), 181–186 (2019)

    Article  Google Scholar 

  5. Kato, S., Hino, T., Yoshikawa, N.: Fundamental study on evaluation system of beginner’s welding using CNN. In: Barolli, L., Hellinckx, P., Natwichai, J. (eds.) 3PGCIC 2019. LNNS, vol. 96, pp. 821–827. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33509-0_77

    Chapter  Google Scholar 

  6. Kato, S., Hino, T., Kumeno, H., Kagawa, T., Nobuhara, H.: Automatic detection of beginner's welding joint. In: Proceedings of 2020 Joint 11th International Conference on Soft Computing and Intelligent Systems and 21st International Symposium on Advanced Intelligent Systems, pp. 465–467 (2020)

    Google Scholar 

  7. Kato, S., et al.: Evaluation for angular distortion of welding plate. In: Arai, K. (ed.) IntelliSys 2021. LNNS, vol. 294, pp. 344–354. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-82193-7_23

    Chapter  Google Scholar 

  8. Islamovic, F., Muratovic, P., Gaco, D., Kulenovic, F.: Bend testing of the welded joints. In: Proceedings of 7th International Scientific Conference on Production Engineering, pp.1–6 (2009)

    Google Scholar 

  9. Park, J.-K., An, W.-H., Kang, D.-J.: Convolutional neural network based surface inspection system for non-patterned welding defects. Int. J. Precis. Eng. Manufact. 20(3), 363–374 (2019)

    Article  Google Scholar 

  10. Dung, C.V., Sekiya, H., Hirano, S., Okatani, T., Miki, C.: A vision-based method for crack detection in gusset plate welded joints of steel bridges using deep convolutional neural networks. Autom. Constr. 102, 217–229 (2019)

    Article  Google Scholar 

  11. Zhang, Z., Wen, G., Chen, S.: Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding. J. Manufact. Processes 45, 208–216 (2019)

    Article  Google Scholar 

  12. Zhang, Z., Li, B., Zhang, W., Lu, R., Wada, S., Zhang, Y.: Real-time penetration state monitoring using convolutional neural network for laser welding of tailor rolled blanks. J. Manufact. Syst. 54, 348–360 (2020)

    Article  Google Scholar 

  13. Dai, W., et al.: Deep learning assisted vision inspection of resistance spot welds. J. Manufact. Processes 62, 262–274 (2021)

    Article  Google Scholar 

  14. Abdelkader, R., Ramou, N., Khorchef, M., Chetih, N., Boutiche, Y.: Segmentation of x-ray image for welding defects detection using an improved Chan-Vese model. In: Materials Today: Proceedings, Part 5, vol.42, pp. 2963–2967 (2021)

    Google Scholar 

  15. Xu, Y., Wang, Z.: Visual sensing technologies in robotic welding: recent research developments and future interests. Sens. Actuat. A: Phys. 320, 112551 (2021)

    Google Scholar 

  16. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26

    Chapter  Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS 2012), pp.1097–1105 (2012)

    Google Scholar 

  18. Mathworks. https://jp.mathworks.com/help/vision/ug/getting-started-with-r-cnn-fast-r-cnn-and-faster-r-cnn.html?lang=en. Accessed 29 July 2021

  19. Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imag. 35(5), 1285–1298 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Enago (www.enago.jp) for the English language review and Ueno and Maeda in MathWorks for technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kato, S., Hino, T., Kume, S., Nobuhara, H. (2022). Crack Detection from Weld Bend Test Images Using R-CNN. In: Barolli, L. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing. 3PGCIC 2021. Lecture Notes in Networks and Systems, vol 343. Springer, Cham. https://doi.org/10.1007/978-3-030-89899-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89899-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89898-4

  • Online ISBN: 978-3-030-89899-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics