Skip to main content

Enhancing Micro-location Accuracy for Asset Tracking: An Evaluation of Two Fingerprinting Approaches Using Three Machine Learning Algorithms

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2021, Volume 2 (FTC 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 359))

Included in the following conference series:

  • 888 Accesses

Abstract

Micro-location is the ability to track a user’s location or asset at a granular level and is the next evolution in location services. However, this evolution is not proceeding without challenges. Current mobile device GPS systems are not accurate enough to provide the granularity required; especially indoors when there is no line-of-sight with satellites. One promising solution involves using Bluetooth Low Energy beacons. In this paper, we present an indoor location system that uses BLE beacons and iPhones. We present the relevant background of work in this area, the architectural framework that we designed and developed, the mobile apps, the machine learning algorithms employed and report on the findings of two fingerprinting methods using three machine learning algorithms. Our indoor micro-location prediction system using beacons consistently performs at an accuracy of at least 1.7 m spherical radius from the target with convergence in under 2 s and was validated on 2,000 trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agustin-Blas, E.L., Salcedo-Sanz, S., Vidales, P.A., Urueta, G., Portilla-Figueras, A.: Near optimal citywide WiFi network deployment using a hybrid grouping genetic algorithm. Expert Syst. Appl. 38, 9543–9556 (2011)

    Article  Google Scholar 

  2. Aimonen, P.: Kalman filter algorithm (2011)

    Google Scholar 

  3. Apple: Apple ibeacon framework and technology (2021)

    Google Scholar 

  4. Belmonte-Fernandez, O., Puertas-Cabedo, A., Torres-Sospedra, J., Montoliu-Colas, R., Trilles-Oliver, S.: An indoor positioning system based on wearables for ambient-assisted living. Sensors 17(1), 36 (2017)

    Google Scholar 

  5. Benaissa, B., Hendrichovsky, F., Yishida, K., Koppen, M., Sincak, P.: Phone application for indoor localization based on BLE signal fingerprint. In: 2018 9th IFIP International Conference on New Technologies, Mobility and Security (2018)

    Google Scholar 

  6. Bluetooth: Bluetooth Smart Technology: Powering the Internet of Things (2021)

    Google Scholar 

  7. Booranawong, A., Sengchuai, K., Jindapetch, N.: Implementation and test of an RSSI-based indoor target localization system: human movement effects on the accuracy. Measurement 133, 370–382 (2019)

    Article  Google Scholar 

  8. Danis, F., Cemgil, A.: Model-based localization and tracking using bluetooth low-energy beacons. Sensors 17(11), 2484 (2017)

    Article  Google Scholar 

  9. De Blas, A., López-de Ipiña, D.: Improving trilateration for indoors localization using BLE beacons. In: 2nd International Multidisciplinary Conference on Computer and Energy Science. Springer (2017)

    Google Scholar 

  10. Estimote: Real-world context for your apps (2021)

    Google Scholar 

  11. Gimbal: Gimbal proximity beacon series 21 (2021)

    Google Scholar 

  12. Dierna Giovanni, L., Machì, A.: Towards accurate indoor localization using iBeacons, fingerprinting and particle filtering. In: International Conference on Indoor Positioning and Indoor Navigation (2016)

    Google Scholar 

  13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, New York (2016)

    MATH  Google Scholar 

  14. Guo, X., Ansari, N., Li, L., Li, H.: Indoor localization by fusing a group of fingerprints based on random forests. IEEE Internet Things J. 5(6), 4686–4698 (2018)

    Article  Google Scholar 

  15. Harper, X.: Multiclass neural network — microsoft docs. Report, UCLA (2021)

    Google Scholar 

  16. Hatem, E., El-Hassan, B., Laheurte, J.-M., Abou-Chakra, S., Colin, E., Marechal, C.: Study the estimated distance error in indoor localization using UHF-RFID. In: 2018 IEEE Middle East and North Africa Communications Conference (2018)

    Google Scholar 

  17. Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: Global Positioning System: Theory and Practice. Springer, New York (2001). https://doi.org/10.1007/978-3-7091-6199-9

    Book  Google Scholar 

  18. Hosseinzadeh, S.: 3d ray tracing for indoor radio propagation (2020)

    Google Scholar 

  19. Huh, J.-H., Seo, K.: An indoor location-based control system using bluetooth beacons for IoT systems. Sensors 17(12), 2917 (2017)

    Article  Google Scholar 

  20. Jan, S.-S., Yeh, S.-J., Liu, Y.-W.: Received signal strength database interpolation by kriging for a Wi-Fi indoor positioning system. Sensors 15(9), 21377–21393 (2015)

    Article  Google Scholar 

  21. Jiang, X., Chen, Y., Liu, J., Gu, Y., Hu, L.: FSELM: fusion semi-supervised extreme learning machine for indoor localization with Wi-Fi and bluetooth fingerprints. Soft. Comput. 22(11), 3621–3635 (2019)

    Article  Google Scholar 

  22. Kawai, T., Matsui, K., Honda, Y., Villarubia, G., Rodriguez, J.M.C.: Preliminary study for improving accuracy on indoor positioning method using compass and walking detect. In: International Symposium on Distributed Computing and Artificial Intelligence (2018)

    Google Scholar 

  23. Kitayoshi, H., Sawaya, K.: Long range passive RFID-tag for sensor networks. In: IEEE 62nd Vehicular Technology Conference. IEEE (2005)

    Google Scholar 

  24. Kluge, T., Groba, C., Springer, T.: Trilateration, fingerprinting, and centroid: taking indoor positioning with bluetooth LE to the wild. In: 2020 IEEE 21st International Symposium on A World of Wireless, Mobile and Multimedia Networks, pp. 264–272 (2020)

    Google Scholar 

  25. Konings, D., Faulkner, N., Alam, F., Noble, F., Lai, E.M.: The effects of interference on the RSSI values of a ZigBee based indoor localization system. In: 24th International Conference on Mechatronics and Machine Vision. IEEE (2017)

    Google Scholar 

  26. Kontakt.io: Simplifying enterprise internet of things (2021)

    Google Scholar 

  27. Kumar, S., Gil, S., Katabi, D., Rus, D.: Accurate indoor localization with zero start-up cost. In: 20th Annual International Conference on Mobile Computing and Networking, pp. 483–494. ACM (2014)

    Google Scholar 

  28. Louridas, P., Ebert, C.: Embedded analytics and statistics for big data. IEEE Softw. 30(6), 33–39 (2013)

    Article  Google Scholar 

  29. Maycotte, H.O.: Beacon technology: the where, what, who, how and why (2015)

    Google Scholar 

  30. Onyx: Onyx enterprise beacons (2021)

    Google Scholar 

  31. Pouyanfar, S., et al.: A survey on deep learning: algorithms, techniques, and applications. ACM Comput. Surv. 51(5), 1–36 (2019)

    Article  Google Scholar 

  32. Raghavan, A.N., Ananthapadmanaban, H., Sivamurugan, M.S., Ravindran, B.: Accurate mobile robot localization in indoor environments using bluetooth. In: 2010 IEEE International Conference on Robotics and Automation. IEEE (2010)

    Google Scholar 

  33. Sung, H.K., Seong, J.K., Zhou, H.: Optimal sensor positioning; a probability perspective study. Soc. Ind. Appl. Math. 39(5), B759–B777 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Sykes, E.R.: A context-aware system using mobile applications and beacons for on-premise security environments. J. Ambient. Intell. Humaniz. Comput. 11(11), 5487–5511 (2020)

    Article  Google Scholar 

  35. Sykes, E.R., Pentland, S., Nardi, S.: Context-aware mobile apps using iBeacons: towards smarter interactions. In: Proceedings of the 25th Annual International Conference on Computer Science and Software Engineering, USA, pp. 120–129. ACM (2015)

    Google Scholar 

  36. Twocanoes: Bleu station beacon series 100 (2021)

    Google Scholar 

  37. Verve: Verve beacons (2021)

    Google Scholar 

  38. Wang, H., Rajagopal, N., Rowe, A., Sinopoli, B., Gao, J.: Efficient beacon placement algorithms for time-of-flight indoor localization. In: 27th ACM International Conference on Advances in Geographic Information Systems, pp. 119–128. ACM (2019)

    Google Scholar 

  39. Werner, M., Kessel, M., Marouane, C.: Indoor positioning using smartphone camera. In: International Conference on Indoor Positioning and Indoor Navigation, vol. 9, no. 3, pp. 245–252 (2011)

    Google Scholar 

  40. Wooley, M.: Bluetooth core specification version 5.1 feature overview. Technical report (2020)

    Google Scholar 

  41. Zafari, F., Papapanagiotou, I., Devetsikiotis, M., Hacker, T.J.: Enhancing the accuracy of iBeacons for indoor proximity-based services. In: IEEE International Conference on Communications, pp. 1–7. IEEE (2017)

    Google Scholar 

  42. Zhao, X., Ruan, L., Zhang, L., Long, Y., Cheng, F.: An analysis of the optimal placement of beacon in bluetooth-INS indoor localization. In: 14th International Conference on Location Based Services. ETH Zurich, (2018)

    Google Scholar 

  43. Zhuang, Y., Yang, J., Li, Y., Qi, L., El-Sheimy, N.: Smartphone-based indoor localization with bluetooth low energy beacons. Sensors 16(5), 596–603 (2016)

    Article  Google Scholar 

  44. Zuo, J., Liu, S., Xia, H., Qiao, Y.: Multi-phase fingerprint map based on interpolation for indoor localization using iBeacons. IEEE Sens. J. 18(8), 3351–3359 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward R. Sykes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sykes, E.R., Mustafa, A. (2022). Enhancing Micro-location Accuracy for Asset Tracking: An Evaluation of Two Fingerprinting Approaches Using Three Machine Learning Algorithms. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2021, Volume 2. FTC 2021. Lecture Notes in Networks and Systems, vol 359. Springer, Cham. https://doi.org/10.1007/978-3-030-89880-9_7

Download citation

Publish with us

Policies and ethics