Skip to main content

A Robust Machine Learning Framework for Diabetes Prediction

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2021, Volume 2 (FTC 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 359))

Included in the following conference series:

  • 830 Accesses

Abstract

Diabetes mellitus is a metabolic disorder characterized by hyperglycemia which results from the inadequacy of the body to secret and responds to insulin. If not properly managed or diagnosed on time, diabetes can pose a risk to vital body organs such as the eyes, kidneys, nerves, heart, and blood vessels and can be life-threatening. From the many years of research in computational diagnosis of diabetes, machine learning has been proven to be a viable solution for the prediction of diabetes. However, the accuracy rate to date suggests that there is still much room for improvement. In this paper, we are proposing a machine learning framework to improve the performance of diabetes prediction with the PIMA Indian dataset. Through analysis, we observe that the main challenges of the dataset, which flaws learning, are feature selection and missing values. For each of these challenges, we propose a working solution that incorporates, Spearman Correlation and polynomial regression from a new perspective. Further, we optimize the random forest classifier by tuning its hyperparameters using grid search and repeated stratified k-fold cross-validation to build a robust random forest model that scales to the prediction problem. Finally, through exhaustive experiments, we demonstrate that our proposed data preparation approaches lead to a robust machine learning framework for the diagnosis of diabetes mellitus with train accuracy, and test-accuracy values that range from 98.96% to 100% and 97.92% to 100%, respectively, which outperforms all the state-of-the-art results. The source code for the proposed machine learning framework is made publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The global epidemics of diabetes in the 21st century: Current situation and perspectives. https://pubmed.ncbi.nlm.nih.gov/31766915/.

References

  1. Khan, R., Chua, Z., Tan, J., Yang, Y., Liao, Z., Zhao, Y.: From pre-diabetes to diabetes: diagnosis, treatments and translational research. Medicina 55(9), 546 (2019)

    Article  Google Scholar 

  2. American Diabetes Association: Classification and diagnosis of diabetes. Diabetes Care 40(Supplement 1), S11–S24 (2017)

    Google Scholar 

  3. Metzger, B.E., Coustan, D.R. (eds.): Proceedings of the Fourth International Workshop-Conference on Gestational Diabetes Mellitus (1998). Diabetes Care 21(Suppl. 2), B1–B167

    Google Scholar 

  4. Cheng, Y., Caughey, A.: Gestational diabetes: diagnosis and management. J. Perinatol. 28(10), 657–664 (2008)

    Article  Google Scholar 

  5. Hasan, M., Alam, M., Das, D., Hossain, E., Hasan, M.: Diabetes prediction using ensembling of different machine learning classifiers. IEEE Access 8, 76516–76531 (2020)

    Article  Google Scholar 

  6. Alam, M.T., et al.: A model for early prediction of diabetes. Inform. Med. Unlocked 16, 100204 (2019)

    Article  Google Scholar 

  7. Wang, Q., Cao, W., Guo, J., Ren, J., Cheng, Y., Davis, D.: DMP_MI: an effective diabetes mellitus classification algorithm on imbalanced data with missing values. IEEE Access 7, 102232–102238 (2019)

    Article  Google Scholar 

  8. Maniruzzaman, M., et al.: Accurate diabetes risk stratification using machine learning: role of missing value and outliers. J. Med. Syst. 42(5), 1–17 (2018). https://doi.org/10.1007/s10916-018-0940-7

    Article  Google Scholar 

  9. Barhate, R., Kulkarni, D.: Analysis of classifiers for prediction of type II diabetes mellitus. In: International Conference on Computing Communication Control and Automation (ICCUBEA), vol. 4, pp. 1–6 (2018)

    Google Scholar 

  10. Zou, Q., Qu, K., Luo, Y., Yin, D., Ju, Y., Tang, H.: Predicting diabetes mellitus with machine learning techniques. Front. Genet. 9, 515 (2018)

    Article  Google Scholar 

  11. Spearman, C.: The proof and measurement of association between two things. Am. J. Psychol. 15(1), 72–101 (1904). https://doi.org/10.2307/1412159.JSTOR1412159

    Article  Google Scholar 

  12. Corder, G.W., Foreman, D.I.: Nonparametric Statistics: A Step-by-Step Approach. Wiley, Hoboken (2014). ISBN: 978-1-118-84031-3

    Google Scholar 

  13. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  14. Podgorelec, V., Kokol, P., Stiglic, B., Rozman, I.: Decision trees: an overview and their use in medicine. J. Med. Syst. 26(5), 445–463 (2002). https://doi.org/10.1023/A:1016409317640

    Article  Google Scholar 

  15. Marshall, R.J.: The use of classification and regression trees in clinical epidemiology. J. Clin. Epidemiol. 54(6), 603–609 (2001)

    Article  Google Scholar 

  16. Biau, G.: Analysis of a random forests model. J. Mach. Learn. Res. 13(1), 1063–1095 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)

    Article  Google Scholar 

  18. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.org/10.1007/BF00058655

    Article  MathSciNet  MATH  Google Scholar 

  19. Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., Johannes, R.S.: Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In: Proceedings of the Annual Symposium on Computer Application in Medical Care, pp. 261–265, November 1988

    Google Scholar 

  20. Kutner, M.H., Nachtsheim, C.J., Neter, J., Li, W.: Applied Linear Statistical Models, 4th edn, vol. 5, p. 283. McGraw-Hill Irwin, Boston (2005)

    Google Scholar 

  21. Zhang, Z.: Missing data imputation: focusing on single imputation. Ann. Transl. Med. 4(1), 9 (2016)

    Article  Google Scholar 

  22. Royston, P.: Multiple imputation of missing values. Stand. Genomic Sci. 4(3), 227–241 (2004)

    Google Scholar 

  23. Probst, P., Wright, M.N., Boulesteix, A.L.: Hyperparameters and tuning strategies for random forest. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 9(3), e1301 (2019)

    Google Scholar 

  24. Krstajic, D., Buturovic, L.J., Leahy, D.E., Thomas, S.: Cross-validation pitfalls when selecting and assessing regression and classification models. J. Cheminform. 6(1), 1–15 (2014)

    Article  Google Scholar 

  25. Mohan, V., et al.: Associations of β-cell function and insulin resistance with youth-onset type 2 diabetes and prediabetes among Asian Indians. Diabetes Technol. Ther. 15(4), 315–322 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chollette Olisah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olisah, C., Adeleye, O., Smith, L., Smith, M. (2022). A Robust Machine Learning Framework for Diabetes Prediction. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2021, Volume 2. FTC 2021. Lecture Notes in Networks and Systems, vol 359. Springer, Cham. https://doi.org/10.1007/978-3-030-89880-9_58

Download citation

Publish with us

Policies and ethics