Skip to main content

Structure and Feature Based Graph U-Net for Early Alzheimer’s Disease Prediction

  • Conference paper
  • First Online:
Multimodal Learning for Clinical Decision Support (ML-CDS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13050))

Abstract

Alzheimer’s disease (AD) is a common neurodegenerative brain disease, which seriously affects the quality of life. Predicting its early stage (e.g., mild cognitive impairment (MCI) and significant memory concern (SMC)) has great significance for early diagnosis. As the vague imaging features of MCI and SMC, graph convolution network (GCN) has been widely used as its advantage of fusing phenotypic information (e.g., gender and age) and establishing relationship between subjects for filtering. Graph U-Net can integrate GCN into U-Net structure with promising classification performance, but it ignores the structure information of graph in the pooling process and leads to the loss of important nodes. To capture the high-order information in the graph, and integrate the structure and node feature information in its pooling operation, a structure and feature based graph U-Net (SFG U-Net) is proposed to predict MCI and SMC in this paper. Firstly, we use the sliding window method to construct dynamic functional connection network (FCN) based on functional magnetic resonance imaging (fMRI). Secondly, we combine image information and phenotypic information to construct functional graph. Thirdly, the structure and the feature of the node in graph are considered in the adaptive pooling layer. Lastly, we get the final diagnosis result by inputting the graph into SFG U-Net. The proposed method is validated on the public data set of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), which achieves a mean classification accuracy of 83.69%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alzheimer's Association: 2019 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 15, 321–387 (2019)

    Google Scholar 

  2. Risacher, S.L., Kim, S., Nho, K., Foroud, T., Shen, L., Petersen, R.C., et al.: APOE effect on Alzheimer’s disease biomarkers in older adults with significant memory concern. Alzheimer’s Dement. 11, 1417–1429 (2015)

    Article  Google Scholar 

  3. Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R.C., Ritchie, K., Broich, K., et al.: Mild cognitive impairment. Lancet 367, 1262–1270 (2006)

    Article  Google Scholar 

  4. Hampel, H., Lista, S.J.: The rising global tide of cognitive impairment. Nat. Rev. Neurol. 12, 131–132 (2016)

    Article  Google Scholar 

  5. Li, Y., Liu, J., Tang, Z., Lei, B.J.: Deep spatial-temporal feature fusion from adaptive dynamic functional connectivity for MCI identification. IEEE Trans. Med. Imaging 39, 2818–2830 (2020)

    Article  Google Scholar 

  6. Li, Y., Liu, J., Gao, X., Jie, B., Kim, M., Yap, P.-T., et al.: Multimodal hyper-connectivity of functional networks using functionally-weighted LASSO for MCI classification. Med. Image Anal. 52, 80–96 (2019)

    Article  Google Scholar 

  7. Lei, B., Yang, P., Wang, T., Chen, S., Ni, D.: Relational-regularized discriminative sparse learning for Alzheimer’s disease diagnosis. IEEE Trans. Cybern. 47, 1102–1113 (2017)

    Article  Google Scholar 

  8. Yang, P., Zhou, F., Ni, D., Xu, Y., Lei, B.J.: Fused sparse network learning for longitudinal analysis of mild cognitive impairment. IEEE Trans. Cybern. 47, 1–14 (2019)

    Google Scholar 

  9. Huettel, S.A., Song, A.W., McCarthy, G.: Functional Magnetic Resonance Imaging, vol. 1. Sinauer Associates, Sunderland (2004)

    Google Scholar 

  10. Chen, B., Wang, S., Sun, W., Shang, X., Liu, H., Liu, G., et al.: Functional and structural changes in gray matter of Parkinson’s disease patients with mild cognitive impairment. Eur. J. Radiol. 93, 16–23 (2017)

    Article  Google Scholar 

  11. Uddin, L.Q., Clare Kelly, A., Biswal, B.B., Xavier Castellanos, F., Milham, M.P.J.: Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum. Brain Mapp. 30, 625–637 (2009)

    Article  Google Scholar 

  12. Arbabshirani, M.R., Damaraju, E., Phlypo, R., Plis, S., Allen, E., Ma, S., et al.: Impact of autocorrelation on functional connectivity. Neuroimage 102, 294–308 (2014)

    Article  Google Scholar 

  13. Mu, Y., Liu, X., Wang, L.J.: A Pearson’s correlation coefficient based decision tree and its parallel implementation. Inf. Sci. 435, 40–58 (2018)

    Article  MathSciNet  Google Scholar 

  14. Schwab, S., Harbord, R., Zerbi, V., Elliott, L., Afyouni, S., Smith, J.Q., et al.: Directed functional connectivity using dynamic graphical models. Neuroimage 175, 340–353 (2018)

    Article  Google Scholar 

  15. Song, X., et al.: Graph convolution network with similarity awareness and adaptive calibration for disease-induced deterioration prediction. Med. Image Anal. 69, 101947 (2021)

    Article  Google Scholar 

  16. Gao, H., Ji, S.: Graph U-Nets. In: International Conference on Machine Learning, pp. 2083–2092 (2019)

    Google Scholar 

  17. Lostar, M., Rekik, I.J.: Deep Hypergraph U-Net for Brain Graph Embedding and Classification. arXiv preprint arXiv:13118 (2020)

  18. Wang, J., Ma, A., Chang, Y., Gong, J., Jiang, Y., Qi, R., et al.: scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses. Nat. Commun. 12, 1–11 (2021)

    Article  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241 (2015)

    Google Scholar 

  20. Kipf, T.N., Welling, M.J.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:02907 (2016)

  21. Parisot, S., Ktena, S.I., Ferrante, E., Lee, M., Guerrero, R., Glocker, B., et al.: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med. Image Anal. 48, 117–130 (2018)

    Article  Google Scholar 

  22. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3558–3565 (2019)

    Google Scholar 

  23. Farris, J.S., Kallersjo, M., Kluge, A.G., Bult, C.J.: Constructing a significance test for incongruence. Syst. Biol. 44, 570–572 (1995)

    Article  Google Scholar 

  24. Chertkow, H., Bub, D.J.: Semantic memory loss in dementia of Alzheimer’s type: what do various measures measure? Brain 113, 397–417 (1990)

    Article  Google Scholar 

  25. Zhang, Y., Simon-Vermot, L., Caballero, M.Á.A., Gesierich, B., Taylor, A.N., Duering, M., et al.: Enhanced resting-state functional connectivity between core memory-task activation peaks is associated with memory impairment in MCI. Neurobiol. Aging 45, 43–49 (2016)

    Article  Google Scholar 

  26. Zanchi, D., Giannakopoulos, P., Borgwardt, S., Rodriguez, C., Haller, S.J.: Hippocampal and amygdala gray matter loss in elderly controls with subtle cognitive decline. Front. Aging Neurosci. 9, 50 (2017)

    Article  Google Scholar 

  27. Lin, F., Ren, P., Lo, R.Y., Chapman, B.P., Jacobs, A., Baran, T.M., et al.: Insula and inferior frontal gyrus’ activities protect memory performance against Alzheimer’s disease pathology in old age. J. Alzheimer’s Dis. 55, 669–678 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported partly by National Natural Science Foundation of China (Nos. 6210010638), China Postdoctoral Science Foundation (Nos. 2019M653014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiying Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Y., Song, X., Qiu, Y., Zhao, C., Lei, B. (2021). Structure and Feature Based Graph U-Net for Early Alzheimer’s Disease Prediction. In: Syeda-Mahmood, T., et al. Multimodal Learning for Clinical Decision Support. ML-CDS 2021. Lecture Notes in Computer Science(), vol 13050. Springer, Cham. https://doi.org/10.1007/978-3-030-89847-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89847-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89846-5

  • Online ISBN: 978-3-030-89847-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics