Skip to main content

Fully Automatic Head and Neck Cancer Prognosis Prediction in PET/CT

  • Conference paper
  • First Online:
Multimodal Learning for Clinical Decision Support (ML-CDS 2021)

Abstract

Several recent PET/CT radiomics studies have shown promising results for the prediction of patient outcomes in Head and Neck (H&N) cancer. These studies, however, are most often conducted on relatively small cohorts (up to 300 patients) and using manually delineated tumors. Recently, deep learning reached high performance in the automatic segmentation of H&N primary tumors in PET/CT. The automatic segmentation could be used to validate these studies on larger-scale cohorts while obviating the burden of manual delineation. We propose a complete PET/CT processing pipeline gathering the automatic segmentation of primary tumors and prognosis prediction of patients with H&N cancer treated with radiotherapy and chemotherapy. Automatic contours of the primary Gross Tumor Volume (GTVt) are obtained from a 3D UNet. A radiomics pipeline that automatically predicts the patient outcome (Disease Free Survival, DFS) is compared when using either the automatically or the manually annotated contours. In addition, we extract deep features from the bottleneck layers of the 3D UNet to compare them with standard radiomics features (first- and second-order as well as shape features) and to test the performance gain when added to them. The models are evaluated on the HECKTOR 2020 dataset consisting of 239 H&N patients with PET, CT, GTVt contours and DFS data available (five centers). Regarding the results, using Hand-Crafted (HC) radiomics features extracted from manual GTVt achieved the best performance and is associated with an average Concordance (C) index of 0.672. The fully automatic pipeline (including deep and HC features from automatic GTVt) achieved an average C index of 0.626, which is lower but relatively close to using manual GTVt (p-value = 0.20). This suggests that large-scale studies could be conducted using a fully automatic pipeline to further validate the current state of the art H&N radiomics. The code will be shared publicly for reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We can unconventionally detail the number of HC features as follows: \(274 = 2 \text { modalities}\times (2\text { bin}\times 56 \text { 2}^{nd}\text {order} + 18 \text { 1}^{st}\text {order}) + 14 \text { shape}\) (see Table 2).

References

  1. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2016)

    Article  Google Scholar 

  2. Zwanenburg, A., et al.: The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2), 328–338 (2020)

    Article  Google Scholar 

  3. Vallieres, M., et al.: Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci. Rep. 7(1), 1–14 (2017)

    Google Scholar 

  4. Andrearczyk, V., et al.: Automatic segmentation of head and neck tumors and nodal metastases in PET-CT scans. In International Conference on Medical Imaging with Deep Learning (MIDL) (2020)

    Google Scholar 

  5. Apostolova, I., et al.: Asphericity of pretherapeutic tumour FDG uptake provides independent prognostic value in head-and-neck cancer. Eur. Radiol. 24(9), 2077–2087 (2014)

    Google Scholar 

  6. Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2020: automatic head and neck tumor segmentation in PET/CT. In: Lecture Notes in Computer Science (LNCS) Challenges (2021)

    Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  8. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  9. Havaei, M.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  10. Baid, U., et al.: Deep Learning Radiomics Algorithm for Gliomas (DRAG) Model: A Novel Approach Using 3D UNET Based Deep Convolutional Neural Network for Predicting Survival in Gliomas. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 369–379. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_33

  11. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_25

    Chapter  Google Scholar 

  12. Andrearczyk, V., Oreiller, V., Depeursinge, A.: Oropharynx detection in PET-CT for tumor segmentation. In: Irish Machine Vision and Image Processing (2020)

    Google Scholar 

  13. Harrell Jr, F.E., Lee, K.L., Mark, D.B.: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 15(4), 361–387 (1996)

    Google Scholar 

  14. Lambin, P., et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14(12), 749–762 (2017)

    Google Scholar 

  15. Suter, Y., et al.: Radiomics for glioblastoma survival analysis in pre-operative MRI: exploring feature robustness, class boundaries, and machine learning techniques. Cancer Imaging 20(1), 1–13 (2020)

    Article  Google Scholar 

  16. David, C.R., et al.: Regression models and life tables (with discussion). J. R. Stat. Soc. 34(2), 187–220 (1972)

    Google Scholar 

  17. Ishwaran, H., et al.: Random survival forests. Ann. Appl. Stat. 2(3), 841–860 (2008)

    Google Scholar 

  18. Lowekamp, B.C., Chen, D.T., Ibáñez, L., Blezek, D.: The design of simpleitk. Front. Neuroinf. 7, 45 (2013)

    Google Scholar 

  19. Van Griethuysen, J.J., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017)

    Google Scholar 

  20. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Pölsterl, S.: scikit-survival: a library for time-to-event analysis built on top of scikit-learn. J. Mach. Learn. Res. 21(212), 1–6 (2020)

    MATH  Google Scholar 

  22. Andrearczyk, V., et al.: Multi-task deep segmentation and radiomics for automatic prognosis in head and neck cancer. In: Rekik, I., Adeli, E., Park, S.H., Schnabel, J. (eds.) Predictive Intelligence in Medicine. PRIME 2021. Lecture Notes in Computer Science, vol. 12928, Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87602-9_14

  23. Bouckaert, R.R., Frank, E.: Evaluating the replicability of significance tests for comparing learning algorithms. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 3–12. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_3

    Chapter  Google Scholar 

  24. Vorwerk, H., et al.: The delineation of target volumes for radiotherapy of lung cancer patients. Radiother. Oncol. 91(3), 455–460 (2009)

    Google Scholar 

  25. Fontaine, P., Acosta, O., Castelli, J., De Crevoisier, R., Müller, H., Depeursinge, A.: The importance of feature aggregation in radiomics: a head and neck cancer study. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

  26. Zhai, T.T., et al.: Improving the prediction of overall survival for head and neck cancer patients using image biomarkers in combination with clinical parameters. Radiother. Oncol. 124(2), 256–262 (2017)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Swiss National Science Foundation (SNSF, grant 205320_179069), the Swiss Personalized Health Network (SPHN via the IMAGINE and QA4IQI projects), and the Hasler Foundation (via the EPICS project, grant 20004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Fontaine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fontaine, P. et al. (2021). Fully Automatic Head and Neck Cancer Prognosis Prediction in PET/CT. In: Syeda-Mahmood, T., et al. Multimodal Learning for Clinical Decision Support. ML-CDS 2021. Lecture Notes in Computer Science(), vol 13050. Springer, Cham. https://doi.org/10.1007/978-3-030-89847-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89847-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89846-5

  • Online ISBN: 978-3-030-89847-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics