Skip to main content

From Picoscale Pathology to Decascale Disease: Image Registration with a Scattering Transform and Varifolds for Manipulating Multiscale Data

  • Conference paper
  • First Online:
Multimodal Learning for Clinical Decision Support (ML-CDS 2021)

Abstract

Advances in neuroimaging have yielded extensive variety in the scale and type of data available. Effective integration of such data promises deeper understanding of anatomy and disease–with consequences for both diagnosis and treatment. Often catered to particular datatypes or scales, current computational tools and mathematical frameworks remain inadequate for simultaneously registering these multiple modes of “images” and statistically analyzing the ensuing menagerie of data. Here, we present (1) a registration algorithm using a “scattering transform” to align high and low resolution images and (2) a varifold-based modeling framework to compute 3D spatial statistics of multiscale data. We use our methods to quantify microscopic tau pathology across macroscopic 3D regions of the medial temporal lobe to address a major challenge in the diagnosis of Alzheimer’s Disease–the reliance on invasive methods to detect microscopic pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allard, W.K.: On the first variation of a varifold. Ann. Math. 95(3), 417–491 (1972). https://doi.org/10.2307/1970934

    Article  MathSciNet  MATH  Google Scholar 

  2. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005). https://doi.org/10.1023/B:VISI.0000043755.93987.aa

    Article  Google Scholar 

  3. Blanken, A.E., et al.: Associations between hippocampal morphometry and neuropathologic markers of Alzheimer’s disease using 7 T MRI. NeuroImage Clin. 15, 56–61 (2017). https://doi.org/10.1016/j.nicl.2017.04.020

  4. Braak, H., Braak, E.: Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82(4), 239–259 (1991). https://doi.org/10.1007/BF00308809

    Article  Google Scholar 

  5. Bradski, G.: The OpenCV Library. Dr. Dobb’s J. Softw. Tools (2000)

    Google Scholar 

  6. Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1872–1886 (2013). https://doi.org/10.1109/TPAMI.2012.230

    Article  Google Scholar 

  7. Charon, N., Trouvé, A.: The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM J. Imaging Sci. 6(4), 2547–2580 (2013). https://doi.org/10.1137/130918885

    Article  MathSciNet  MATH  Google Scholar 

  8. CIBC seg3D: Volumetric image segmentation and visualization. scientific computing and imaging institute (SCI) (2016). http://www.seg3d.org

  9. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Series B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Ferrante, E., Paragios, N.: Slice-to-volume medical image registration: a survey. Med. Image Anal. 39, 101–123 (2017). https://doi.org/10.1016/j.media.2017.04.010

    Article  Google Scholar 

  11. Jack, C.R., et al.: NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 14(4), 535–562 (2018). https://doi.org/10.1016/j.jalz.2018.02.018

  12. Komura, D., Ishikawa, S.: Machine learning methods for histopathological image analysis. Comput. Struct. Biotechnol. J. 16, 34–42 (2018). https://doi.org/10.1016/j.csbj.2018.01.001

    Article  Google Scholar 

  13. Kulason, S., et al.: Cortical thickness atrophy in the transentorhinal cortex in mild cognitive impairment. NeuroImage Clin. 21, 101617 (2019). https://doi.org/10.1016/j.nicl.2018.101617

  14. Lambin, P., et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14(12), 749–762 (2017). https://doi.org/10.1038/nrclinonc.2017.141

    Article  Google Scholar 

  15. Liu, S., et al.: Multimodal neuroimaging computing: a review of the applications in neuropsychiatric disorders. Brain Inf. 2(3), 167–180 (2015). https://doi.org/10.1007/s40708-015-0019-x

    Article  Google Scholar 

  16. Mai, J.K., Paxinos, G., Voss, T.: Atlas of the Human Brain, 3rd edn. Elsevier Inc, New York (2008)

    Google Scholar 

  17. Mallat, S.: Recursive interferometric representations. In: European Signal Processing Conference, pp. 716–720 (2010)

    Google Scholar 

  18. Mallat, S.: Group invariant scattering. Commun. Pur. Appl. Math. 65(10), 1331–1398 (2012)

    Article  MathSciNet  Google Scholar 

  19. Miller, M.I., Tward, D., Trouv’e, A.: Hierarchical computational anatomy: unifying the molecular to tissue continuum via measure representations of the brain. bioRxiv (2021). https://doi.org/10.1101/2021.04.19.440540

  20. Miller, M.I., Tward, D.J., Trouve, A.: Coarse-to-fine Hamiltonian dynamics of hierarchical flows in computational anatomy. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2020)

    Google Scholar 

  21. Pantanowitz, L., Sharma, A., Carter, A.B., Kurc, T., Sussman, A., Saltz, J.: Twenty years of digital pathology: an overview of the road travelled, what is on the horizon, and the emergence of vendor-neutral archives. J. Pathol. Inform. 9(1), 40 (2018). https://doi.org/10.4103/jpi.jpi_69_18

  22. Pichat, J., Iglesias, J.E., Yousry, T., Ourselin, S., Modat, M.: A survey of methods for 3D histology reconstruction. Med. Image Anal. 46, 73–105 (2018). https://doi.org/10.1016/j.media.2018.02.004

    Article  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  24. SIfre, L., Mallat, S.: Rigid-motion scattering for texture classification (2014)

    Google Scholar 

  25. Tang, Z., Chuang, K.V., DeCarli, C., Jin, L.W., Beckett, L., Keiser, M.J., Dugger, B.N.: Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline. Nat. Comm. 10(1), 1–14 (2019). https://doi.org/10.1038/s41467-019-10212-1

    Article  Google Scholar 

  26. Tward, D., et al.: Diffeomorphic registration with intensity transformation and missing data: application to 3D digital pathology of Alzheimer’s disease. Front. Neurosci. 14, 1–18 (2020). https://doi.org/10.3389/fnins.2020.00052

  27. Tward, D., Li, X., Huo, B., Lee, B., Mitra, P., Miller, M.: 3D mapping of serial histology sections with anomalies using a novel robust deformable registration algorithm. In: Zhu, D., et al. (eds.) MBIA/MFCA -2019. LNCS, vol. 11846, pp. 162–173. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33226-6_18

  28. Xia, C., Babcock, H.P., Moffitt, J.R., Zhuang, X.: Multiplexed detection of RNA using MERFISH and branched DNA amplification. Sci. Rep. 9(1) (2019). https://doi.org/10.1038/s41598-019-43943-8

  29. Yushkevich, P.A., et al.: 3D mapping of tau neurofibrillary tangle pathology in the human medial temporal lobe. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1312–1316 (2020). https://doi.org/10.1109/ISBI45749.2020.9098462

Download references

Acknowledgements

This work was supported by the NIH (T32 GM 136577 (KS), U19 AG 033655 (MM), and R01 EB 020062 (MM)), the Kavli Neuroscience Discovery Institute (MM, DT), and the Karen Toffler Charitable Trust (DT). MM owns a founder share of Anatomy Works with the arrangement being managed by Johns Hopkins University in accordance with its conflict of interest policies. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. We thank Juan Troncoso, Susumu Mori, and Atsushi Saito at the Johns Hopkins Brain Resource Center for preparation of tissue samples. We thank Menno Witter at the Kavli Institute for Systems Neuroscience and Norwegian University of Science and Technology for his input with MTL segmentations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaitlin M. Stouffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stouffer, K.M. et al. (2021). From Picoscale Pathology to Decascale Disease: Image Registration with a Scattering Transform and Varifolds for Manipulating Multiscale Data. In: Syeda-Mahmood, T., et al. Multimodal Learning for Clinical Decision Support. ML-CDS 2021. Lecture Notes in Computer Science(), vol 13050. Springer, Cham. https://doi.org/10.1007/978-3-030-89847-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89847-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89846-5

  • Online ISBN: 978-3-030-89847-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics