Skip to main content

Theory of Nucleation and Glass Formation

  • Chapter
  • First Online:
Metallurgy in Space

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 1048 Accesses

Abstract

Nucleation is the first step in most first-order phase transitions, which include processes such as gas condensation, solidification, and the fabrication of glass ceramics. It also plays a key role in some biological processes and is fundamentally important in the pharmaceutical industry. Nucleation is commonly described within the framework of the classical nucleation theory, which was first developed to describe gas condensation almost 150 years ago. The classical theory is often called the liquid drop model, assuming the formation of small clusters of the new phase that have a sharp boundary with the original phase. It assumes a single nucleation pathway with clusters growing and shrinking by the addition or subtraction of single molecular units and adopts interface-limited kinetics. However, it is now becoming increasingly clear that nucleation is much more complicated than this. Experiments and computer modeling have demonstrated that the cluster interface is broad, not sharp. Studies of nucleation in colloidal and protein liquids, as well as in silicate glasses, have shown that there can be multiple nucleation pathways, not only one. Nucleation can couple with other phase transitions and ordering processes. The local atomic and chemical order in the original phase, even if it is a liquid or a glass, can couple to the nucleation barrier and may play a role in glass formation in some cases. Finally, studies of nucleation in liquids under a microgravity environment have revealed the important role that stirring can have in nucleation. These points will be briefly covered in this chapter, highlighting experimental and computer modeling results and discussing some new models for nucleation that take account of the diffuse interface and cases where long-range diffusion becomes comparable with the interfacial kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K.F. Kelton, A.L. Greer, in Nucleation in Condensed Matter – Applications in Materials and Biology, Pergamon Materials Series, ed. by R. W. Cahn, 1st edn., (Elsevier, Amsterdam, 2010), p. 726

    Google Scholar 

  2. Z.L. Liu, Review of grain refinement of cast metals through inoculation: Theories and developments. Metall. Mater. Trans. A. Phys. Metall. Mater. Sci. 48A, 4755–4776 (2017)

    Article  Google Scholar 

  3. C.A. Angell, Glass formation and glass transition in supercooled liquids, with insights from study of related phenomena in crystals. J. Non-Cryst. Solids 354, 4703–4712 (2008)

    Article  CAS  Google Scholar 

  4. E.D. Zanotto, Glass crystallization research a 36-year retrospective. Part I, fundamental studies. Int. J. Appl. Glas. Sci. 4, 105–116 (2013)

    Article  CAS  Google Scholar 

  5. L.R. Pinckney, G.H. Beall, Microstructural evolution in some silicate glass-ceramics: A review. J. Am. Ceram. Soc. 91, 773–779 (2008)

    Article  CAS  Google Scholar 

  6. J.R. Cox, L.A. Ferris, V.R. Thalladi, Selective growth of a stable drug polymorph by suppressing the nucleation of corresponding metastable polymorphs. Ang. Chem. Int. Ed. 46, 4333–4336 (2007)

    Article  CAS  Google Scholar 

  7. S.D. Thakore, A. Sood, A.K. Bansal, Emerging role of primary heterogeneous nucleation in pharmaceutical crystallization. Drug Dev. Res. 81, 3–22 (2020)

    Article  CAS  Google Scholar 

  8. Y.S. You, T.Y. Kang, S.J. Jun, Control of ice nucleation for subzero food preservation. Food Eng. Rev. 13, 15–35 (2021)

    Article  Google Scholar 

  9. M.J.H. Akanda, M.R. Norazlina, F.S. Azzatul, S. Shaarani, H. Mamat, J.S. Lee, J. Norliza, A.H. Mansoor, J. Selamat, F. Khan, P. Matanjun, M.Z.I. Sarker, Hard fats improve the physicochemical and thermal properties of seed fats for applications in confectionery products. Food Rev. Int. 36, 601–625 (2020)

    Article  Google Scholar 

  10. K.B. Storey, J.M. Storey, Biochemical adaption for freezing tolerance in the Wood Frog, Rana Sylvatica. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 155, 29–36 (1984)

    Article  CAS  Google Scholar 

  11. C. Cerini, S. Geider, B. Dussol, C. Hennequin, M. Daudon, S. Veesler, S. Nitsche, R. Boistelle, P. Berthezene, P. Dupuy, A. Vazi, Y. Berland, J.C. Dagorn, J.M. Verdier, Nucleation of calcium oxalate crystals by albumin: Involvement in the prevention of stone formation. Kidney Int. 55, 1776–1786 (1999)

    Article  CAS  Google Scholar 

  12. D.G. Fahrenheit, Experimenta et observationes de congelatione aquae in vacuo factae. Philos. Trans. R. Soc. 39, 78–89 (1724)

    Google Scholar 

  13. D. Turnbull, Kinetics of solidification of supercooled liquid mercury droplets. J. Chem. Phys. 20, 411–424 (1952)

    Article  CAS  Google Scholar 

  14. J.W. Gibbs, Scientific Papers, vol I, II (Longmans Green, London, 1906)

    Google Scholar 

  15. M. Volmer, A. Weber, Keimbildung in übersättigten Gebilden. Z. Phys. Chem. 119, 227–301 (1926)

    Google Scholar 

  16. R. Becker, W. Döring, Kinetic treatment of grain-formation in super-saturated vapours. Ann. Phys. 24, 719–752 (1935)

    Article  CAS  Google Scholar 

  17. D. Turnbull, J.C. Fisher, Rate of nucleation in condensed systems. J. Chem. Phys. 17, 71–73 (1949)

    Article  CAS  Google Scholar 

  18. L. Granasy, F. Igioi, Comparison of experiments and modern theories of crystal nucleation. J. Chem. Phys. 107, 3634–3644 (1997)

    Article  CAS  Google Scholar 

  19. L. Granasy, P.F. James, Nucleation in oxide glasses: comparison of theory and experiment. Proc. R. Soc. Lond. Ser. A (Math. Phys. Eng. Sci.) 454, 1745 (1998)

    Article  CAS  Google Scholar 

  20. C.K. Bagdassarian, D.W. Oxtoby, Crystal nucleation and growth from the undercooled liquid: A nonclassical piecewise parabolic free energy model. J. Chem. Phys. 100, 2139–2148 (1994)

    Article  CAS  Google Scholar 

  21. F. Spaepen, Homogeneous nucleation and the temperature dependence of the crystal-melt interfacial tension, in Solid State Physics, ed. by H. Ehrenreich, D. Turnbull, (Academic, New York, 1994), pp. 1–32

    Google Scholar 

  22. L. Gránásy, Diffuse interface theory of nucleation. J. Non-Cryst. Solids 162, 301–303 (1993)

    Article  Google Scholar 

  23. L. Granasy, Diffuse interface model of crystal nucleation. J. Non-Cryst. Solids 219, 49–56 (1997)

    Article  CAS  Google Scholar 

  24. L. Granasy, Diffuse interface approach to vapour condensation. Europhys. Lett. 24, 121–126 (1993)

    Article  CAS  Google Scholar 

  25. D. Van Hoesen, Thermophysical Properties and Phase Transformations in Metallic Liquids and Silicate Glasses. PhD thesis in Physics (Washington University in St. Louis, 2000)

    Google Scholar 

  26. H. Reiss, The kinetics of phase transitions in binary systems. J. Chem. Phys. 18, 840–848 (1950)

    Article  CAS  Google Scholar 

  27. D.T. Wu, Nucleation theory, in Solid State Physics, ed. by H. Ehrenreich, F. Spaepen, (Academic, Boston, 1997), pp. 37–187

    Google Scholar 

  28. K. Binder, D. Stauffer, Statistical theory of nucleation, condensation and coagulation. Adv. Phys. 25, 343–396 (1976)

    Article  CAS  Google Scholar 

  29. D. Stauffer, Kinetic theory of two-component (‘heteromolecular’) nucleation and condensation. J. Aerosol Sci. 7, 319–333 (1976)

    Article  CAS  Google Scholar 

  30. D.E. Temkin, V.V. Shevelev, On the theory of nucleation in two-component systems. J. Cryst. Growth 52, 104–110 (1981)

    Article  CAS  Google Scholar 

  31. K.C. Russell, Linked flux analysis of nucleation in condensed phases. Acta Metall. 16, 761–769 (1968)

    Article  CAS  Google Scholar 

  32. P.F. Wei, K.F. Kelton, R. Falster, Coupled-flux nucleation modeling of oxygen precipitation in silicon. J. Appl. Phys. 88, 5062–5070 (2000)

    Article  CAS  Google Scholar 

  33. H. Diao, R. Salazar, K.F. Kelton, L.D. Gelb, Impact of diffusion on concentration profiles around near-critical nuclei and implications for theories of nucleation and growth. Acta Mater. 56, 2585–2591 (2008)

    Article  CAS  Google Scholar 

  34. K.F. Kelton, Time-dependent nucleation in partitioning transformations. Acta Mater. 48, 1967–1980 (2000)

    Article  CAS  Google Scholar 

  35. S. Wonczak, R. Strey, D. Stauffer, Confirmation of classical nucleation theory by Monte Carlo simulations in the 3-dimensional Ising model at low temperature. J. Chem. Phys. 113, 1976–1980 (2000)

    Article  CAS  Google Scholar 

  36. V.A. Shneidman, K.A. Jackson, K.M. Beatty, On the applicability of the classical nucleation theory in an Ising system. J. Chem. Phys. 111, 6932–6941 (1999)

    Article  CAS  Google Scholar 

  37. W.C. Swope, H.C. Andersen, 106 particle molecular-dynamics studie of homogeneous nucleation of crystals in a supercooled atomic liquid. Phys. Rev. B 41, 7042–7054 (1990)

    Article  CAS  Google Scholar 

  38. J.K. Bording, J. Tafto, Molecular-dynamics simulation of growth of nanocrystals in an amorphous matrix. Phys. Rev. B 62, 8098–8103 (2000)

    Article  CAS  Google Scholar 

  39. J.K. Lee, J.A. Barker, F.F. Abraham, Theory and Monte-Carlo simulation of physical clusters in imperfect vapor. J. Chem. Phys. 58, 3166–3180 (1973)

    Article  CAS  Google Scholar 

  40. K. Dahlberg, A. Agrawal, R. Chang, Z. Nussinov, K.F. Kelton, private communication (2021)

    Google Scholar 

  41. F.C. Frank, A discussion on theory of liquids: Supercooling of liquids. Proc. R. Soc. Lond. Ser. A (Math. Phys. Eng. Sci.) 215, 43–46 (1952)

    CAS  Google Scholar 

  42. P. Ganesh, M. Widom, Ab initio simulations of geometrical frustration in supercooled liquid Fe and Fe-based metallic glass. Phys. Rev. B. 77, 014205 (2008)

    Google Scholar 

  43. T.T. Debela, X.D. Wang, Q.P. Cao, D.X. Zhang, J.Z. Jiang, The crystallization process of liquid vanadium studied by ab initio molecular dynamics. J. Phys. Condens. Matter 26, 155101 (2014)

    Article  CAS  Google Scholar 

  44. T.T. Debela, X.D. Wang, Q.P. Cao, Y.H. Lu, D.X. Zhang, H.-J. Fecht, H. Tanaka, J.Z. Jiang, Nucleation driven by orientational order in supercooled niobium as seen via ab initio molecular dynamics. Phys. Rev. B 89, 104205 (2014)

    Article  Google Scholar 

  45. T.T. Debela, X.D. Wang, Q.P. Cao, D.X. Zhang, J.Z. Jiang, Comparative study of crystallization process in metallic melts using ab initio molecular dynamics simulations. J. Phys. Condens. Matter 29, 185401 (2017)

    Article  Google Scholar 

  46. K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, M.B. Robinson, D.S. Robinson, First X-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier. Phys. Rev. Lett. 90, 195504 (2003)

    Article  CAS  Google Scholar 

  47. T. Kawasaki, H. Tanaka, Formation of a crystal nucleation from liquid. Proc. Natl. Acad. Sci. U. S. A. 107, 14036–14041 (2010)

    Article  CAS  Google Scholar 

  48. J. Russo, H. Tanaka, The microscopic pathway tocrystallization in supercooled liquids. Sci. Rep. 2, 505 (2012)

    Article  Google Scholar 

  49. Z.G. Wang, C.H. Chen, S.V. Ketov, K. Akagi, A.A. Tsarkov, Y. Ikuhara, D.V. Louzguine-Luzgin, Local chemical ordering within the incubation period as a trigger for nanocrystasllization of a highly supercooled Ti-based liquid. Mater. Des. 156, 504–513 (2018)

    Article  CAS  Google Scholar 

  50. E. Cini, B. Vinet, P.J. Desre, A thermodynamic approach to homogeneous nucleation via fluctuations of concentration in binary liquid alloys. Phil. Mag. A 80, 955–966 (2000)

    Article  CAS  Google Scholar 

  51. M.E. McKenzie, B. Deng, D.C. Van Hoesen, X. Xia, D.E. Baker, A. Rezikyan, R.E. Youngman, K.F. Kelton, Nucleation pathways in barium silicate glasses. Sci. Rep. 11, 69 (2021)

    Article  CAS  Google Scholar 

  52. Y. Shibuta, S. Sakane, E. Miyoshi, S. Okita, T. Takaki, M. Ohno, Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal. Nat. Commun. 8, 10 (2017)

    Article  Google Scholar 

  53. F. Puosi, A. Pasturel, Dynamic slowing-down and crystal nucleation in a supercooled metallic glass former induced by local icosahedral order. Phys Rev Mater 3, 6 (2019)

    Google Scholar 

  54. Y.Q. Cheng, H.W. Sheng, E. Ma, Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys. Phys. Rev. B 78, 7 (2008)

    Article  Google Scholar 

  55. L. Berthier, G. Biroli, Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011)

    Article  CAS  Google Scholar 

  56. F. Puosi, A. Pasturel, Nucleation kinetis in a supercooled metallic glass former. Acta Mater. 174, 387–397 (2019)

    Article  CAS  Google Scholar 

  57. D. Moroni, P.R. ten Wolde, P.G. Bolhuis, Interplay between structure and size in a critical crystal nucleus. Phys. Rev. Lett. 94, 235703 (2005)

    Article  Google Scholar 

  58. R.S. Aga, J.F. Morris, J.J. Hoyt, M. Mendelev, Quantitative parameter-free prediction of simulated crystal-nucleation times. Phys. Rev. Lett. 96, 245701 (2006)

    Article  Google Scholar 

  59. G.E. Norman, V.V. Pisarev, Molecular dynamics analysis of the crystallization of an overcooled aluminum melt. Russ. J. Phys. Chem. A 86, 1447–1452 (2012)

    Article  CAS  Google Scholar 

  60. S.C. Costa Pradoa, J.P. Rino, E.D. Zanotto, Successful test of the classical nucleation theory by molecular dynamic simulations of BaS. Comput. Mater. Sci. 161, 99–106 (2019)

    Article  Google Scholar 

  61. A.O. Tipeev, E.D. Zanotto, Nucleation kinetics in supercooled Ni50Ti50: Computer simulation data corroborate the validity of the Classical Nucleation Theory. Chem. Phys. Lett. 735, 136749 (2019)

    Article  CAS  Google Scholar 

  62. C.W. Morton, W.H. Hofmeister, R.J. Bayuzick, A.J. Rulison, J.L. Watkins, The kinetics of solid nucleation in zirconium. Acta Mater. 46, 6033–6039 (1998)

    Article  CAS  Google Scholar 

  63. W.H. Hofmeister, C.W. Morton, R.J. Bayuzick, Monte Carlo testing of the statistical analysis of nucleation data. Acta Mater. 46, 1903–1908 (1998)

    Article  CAS  Google Scholar 

  64. V. Skripov, Homogeneous nucleation in melts and amorphous films. Curr. Top. Mater. Sci. 2, 327–378 (1977)

    CAS  Google Scholar 

  65. T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, D.M. Herlach, Icosahedral short-range order in deeply undercooled metallic melts. Phys. Rev. Lett. 89, 075507 (2002)

    Article  CAS  Google Scholar 

  66. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 (1984)

    Article  CAS  Google Scholar 

  67. M.E. Sellers, D.C. Van Hoesen, A.K. Gangopadhyay, K.F. Kelton, Maximum supercooling studies in Ti39.5Zr39.5Ni21, Ti40Zr30Ni30, and Zr80Pt20 liquids-Connecting liquid structure and the nucleation barrier. J. Chem. Phys. 150 (2019)

    Google Scholar 

  68. H. Tanaka, Bond orientational ordering in a metastable supercooled liquid: A shadow of crystallization and liquid-liquid transition. J. Stat. Mech. Theory Exp. 1–27 (2010)

    Google Scholar 

  69. D. Kashchiev, Solution of the non-steady state problem in nucleation kinetics. Surf. Sci. 14, 209–220 (1969)

    Article  Google Scholar 

  70. X. Xia, D.C. Van Hoesen, M.E. McKenzie, R.E. Youngman, O. Gulbiten, K.F. Kelton, Time-dependent nucleation rate measurements in BaO·2SiO2 and 5BaO·8SiO2 glasses. J. Non-Cryst. Solids 525, 119575 (2019)

    Article  CAS  Google Scholar 

  71. X. Xia, D.C. Van Hoesen, M.E. McKenzie, R.E. Youngman, K.F. Kelton, Low-temperature nucleation anomaly in silicate glasses shown to be artifact in a 5BaO·8SiO2 glass. Nat. Commun. 12, 2026 (2021)

    Article  CAS  Google Scholar 

  72. M.C. Weinberg, E.D. Zanotto, Re-examination of the temperature dependence of the classical nucleation rate: homogeneous crystal nucleation in glass. J. Non-Cryst. Solids 108, 99–108 (1989)

    Article  CAS  Google Scholar 

  73. A.S. Abyzov, V.M. Fokin, A.M. Rodrigues, E.D. Zanotto, J.W.P. Schmelzer, The effect of elastic stresses on the thermodynamic barrier for crystal nucleation. J. Non-Cryst. Solids 432, 325–333 (2016)

    Article  CAS  Google Scholar 

  74. V.M. Fokin, A.S. Abyzov, E.D. Zanotto, D.R. Cassar, A.M. Rodrigues, Crystal nucleation in glass-forming liquids: Variation of the size of the “structural units” with temperature. J. Non-Cryst. Solids 447, 35–44 (2016)

    Article  CAS  Google Scholar 

  75. A.S. Abyzov, V.M. Fokin, N.S. Yuritsyn, A.M. Rodrigues, J.W.P. Schmelzer, The effect of heterogeneous structure of glass-forming liquids on crystal nucleation. J. Non-Cryst. Solids 462, 32–40 (2017)

    Article  CAS  Google Scholar 

  76. D.R. Cassar, A.H. Serra, O. Peitl, E.D. Zanotto, Critical assessment of the alleged failure of the Classical Nucleation Theory at low temperatures. J. Non-Cryst. Solids 547, 120297 (2020)

    Article  CAS  Google Scholar 

  77. K.F. Kelton, A.L. Greer, Test of classical nucleation theory in a condensed system. Phys. Rev. B38, 10089–10092 (1988)

    Article  Google Scholar 

  78. A.L. Greer, K.F. Kelton, Nucleation in lithium disilicate glass: A test of classical theory by quantitative modeling. J. Am. Ceram. Soc. 74, 1015–1022 (1991)

    Article  CAS  Google Scholar 

  79. M. Buchwitz, R. Adlwarth-Dieball, P.L. Ryder, Kinetics of the crystallization of amorphous Ti2Ni. Acta Metall. Mater. 41, 1885–1892 (1993)

    Article  CAS  Google Scholar 

  80. F.X. Bai, J.H. Yao, Y.X. Wang, J. Pan, Y. Li, Crystallization kinetics of an Au-based metallic glass upon ultrafast heating and cooling. Scr. Mater. 132, 58–62 (2017)

    Article  CAS  Google Scholar 

  81. K. Kosiba, S. Scudino, R. Kobold, U. Kühn, A.L. Greer, J. Eckert, S. Pauly, Transient nucleation and microstructural design in flash-annealed bulk metallic glasses. Acta Mater. 127, 416–425 (2017)

    Article  CAS  Google Scholar 

  82. A. Penkova, W. Pan, F. Hodjaoglu, P.G. Vekilov, Nucleation of protein crystals under the influence of solution shear flow. Ann. N. Y. Acad. Sci. 1077, 214–231 (2006)

    Article  CAS  Google Scholar 

  83. J.A. Baird, D. Santiago-Quinonez, C. Rinaldi, L.S. Taylor, Role of viscosity in influencing the glass-forming ability of organic molecules from the undercooled melt state. Pharm. Res. 29, 271–284 (2012)

    Article  CAS  Google Scholar 

  84. A.A. Chernov, Protein crystals and their growth. J. Struct. Biol. 142, 3–21 (2003)

    Article  CAS  Google Scholar 

  85. M.R. Meier, L. Lei, A. Rinkenburger, J. Plank, Crystal growth of Ca3Al(OH)(6)·12H(2)O (2)·(SO4)(3)·2H(2)O (Ettringite) studied under microgravity conditions. J. Wuhan Univ. Technol. Mater. Sci. Ed. 35, 893–899 (2020)

    Article  CAS  Google Scholar 

  86. X.Y. Liu, K. Tsukamoto, M. Sorai, New kinetics of CaCO3 nucleation and microgravity effect. Langmuir 16, 5499–5502 (2000)

    Article  CAS  Google Scholar 

  87. A. Tsuchida, E. Takyo, K. Taguchi, T. Okubo, Kinetic analyses of colloidal crystallization in shear flow. Colloid Polym. Sci. 282, 1105–1110 (2004)

    Article  CAS  Google Scholar 

  88. A. Penkova, W.C. Pan, F. Hodjaoglu, P.G. Vekilov, Nucleation of protein crystals under the influence of solution shear flow, in Interdisciplinary Transport Phenomena in the Space Sciences, ed. by S. S. Sadhal, (Wiley-Blackwell, Hoboken, 2006), pp. 214–231

    Google Scholar 

  89. C. Forsyth, P.A. Mulheran, C. Forsyth, M.D. Haw, I.S. Burns, J. Sefcik, Influence of controlled fluid shear on nucleation rates in glycine aqueous solutions. Cryst. Growth Des. 15, 94–102 (2015)

    Article  CAS  Google Scholar 

  90. R. Blaak, S. Auer, D. Frenkel, H. Lowen, Crystal nucleation of colloidal suspensions under shear. Phys. Rev. Lett. 93, 068303 (2004)

    Article  Google Scholar 

  91. A.V. Mokshin, B.N. Galimzyanov, J.L. Barrat, Extension of classical nucleation theory for uniformly sheared systems. Phys. Rev. E 87, 062307 (2013)

    Article  Google Scholar 

  92. D. Richard, T. Speck, The role of shear in crystallization kinetics: From suppression to enhancement. Sci. Rep. 5, 7 (2015)

    Article  Google Scholar 

  93. F. Mura, A. Zaccone, Effects of shear flow on phase nucleation and crystallization. Phys. Rev. E 93, 11 (2016)

    Article  Google Scholar 

  94. W.H. Hofmeister, R.J. Bayuzick, R. Hyers, G. Trapaga, Cavitation-induced nucleation of zirconium in low earth orbit. Appl. Phys. Lett. 74, 2711–2713 (1999)

    Article  CAS  Google Scholar 

  95. D.M. Herlach, S. Burggraf, P. Galenko, C.A. Gandin, A. Garcia-Escorial, H. Henein, C. Karrasch, A. Mullis, M. Rettenmayr, J. Valloton, Solidification of undercooled melts of Al-based alloys on Earth and in space. JOM 69, 1303–1310 (2017)

    Article  CAS  Google Scholar 

  96. S.H. Oh, Y. Kauffmann, C. Scheu, W.D. Kaplan, M. Ruhle, Ordered liquid aluminum at the interface with sapphire. Science 310, 661–663 (2005)

    Article  CAS  Google Scholar 

  97. A.L. Greer, Liquid metals: Supercool order. Nat. Mater. 5, 13–14 (2006)

    Article  CAS  Google Scholar 

  98. D.M. Matson, Retained free energy as a driving force for phase transformation during rapid solidification of stainless steel alloys in microgravity. npj Microgravity 4, 6 (2018)

    Google Scholar 

  99. H.X. Jiang, S.X. Li, L.L. Zhang, J. He, J.Z. Zhao, Effect of microgravity on the solidification of aluminum-bismuth-tin immiscible alloys. npj Microgravity 5, 9 (2019)

    Google Scholar 

  100. A.K. Gangopadhyay, M.E. Sellers, G.P. Bracker, D. Holland-Moritz, D.C. Van Hoesen, S. Koch, P.K. Galenko, A.K. Pauls, R.W. Hyers, K.F. Kelton, Demonstration of the effect of stirring on nucleation from experiments on the International Space station. npj Microgravity, 7, 31 (2021)

    Google Scholar 

  101. D. Turnbull, Under what conditions can a glass be formed? Contemp. Phys. 10, 473–488 (1969)

    Article  CAS  Google Scholar 

  102. H. Fecht, W.L. Johnson, Thermodynamic properties and metastability of bulk metallic glasses. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 375, 2–8 (2004)

    Article  Google Scholar 

  103. S. Ganorkar, S. Lee, Y.H. Lee, T. Ishikawa, G.W. Lee, Origin of glass forming ability of Cu-Zr alloys: A link between compositional variation and stability of liquid and glass. Phys Rev Mater 2, 115606 (2018)

    Article  CAS  Google Scholar 

  104. M. Mohr, R.K. Wunderlich, D.C. Hofmann, H.J. Fecht, Thermophysical properties of liquid Zr52.5Cu17.9Ni14.6Al10Ti5 – prospects for bulk metallic glass manufacturing in space. npj Microgravity 5, 8 (2019)

    Article  Google Scholar 

  105. https://www.space.com/34890-metallic-glass-ideal-for-space-mission-gears.html

  106. C.A. Angell, Strong and Fragile Liquids. in Relaxation in Complex Systems (National Technical Information Service, U.S. Department of Commerce, Springfield, 1984)

    Google Scholar 

  107. R. Busch, E. Bakke, W.L. Johnson, Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.76Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy. Acta Mater. 46, 4725–4732 (1998)

    Article  CAS  Google Scholar 

  108. R. Böhmer, K.L. Ngai, C.A. Angell, D.J. Plazek, Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201–4209 (1993)

    Article  Google Scholar 

  109. W.L. Johnson, J.H. Na, M.D. Demetriou, Quantifying the origin of metallic glass formation. Nat. Commun. 7, 10313 (2016)

    Article  CAS  Google Scholar 

  110. R. Dai, R. Ashcraft, A.K. Gangopadhyay, K.F. Kelton, Predicting metallic glass formation from properties of the high temperature liquid. J. Non-Cryst. Solids 525, 119673 (2019)

    Article  CAS  Google Scholar 

  111. R. Dai, A.K. Gangopadhyay, R.J. Chang, K.F. Kelton, A method to predict the glass transition temperature in metallic glasses from properties of the equilibrium liquid. Acta Mater. 172, 1–5 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The preparation of this chapter was supported by the National Aeronautics and Space Administration (NASA) under grant NNX16AB52G and the National Science Foundation under grants DMR 1720296 and DMR 1904281.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth F. Kelton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kelton, K.F. (2022). Theory of Nucleation and Glass Formation. In: Fecht, HJ., Mohr, M. (eds) Metallurgy in Space . The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-89784-0_7

Download citation

Publish with us

Policies and ethics