Skip to main content

An Overview of Ground-Based Electrostatic Levitation

  • Chapter
  • First Online:
Metallurgy in Space

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Electrostatic levitation (ESL) is a containerless processing method used to levitate small, typically several millimeters in diameter, samples for the measurement of thermophysical properties, such as density, surface tension, and viscosity and for materials science studies. Surface tension is an important property for heat and mass transfer modeling of several industrial processes. Electrostatic levitation is also used to study nucleation and glass formation, and electrostatic levitators have been developed for use on beamlines, such as synchrotron sources. An overview of ground-based ESL is given in this chapter, including some unique capabilities at various ESL facilities throughout the World.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. W.-K. Rhim, S.K. Chung, D. Barber, K.F. Man, G. Gutt, A. Rulison, R.E. Spjut, An electrostatic levitator for high-temperature containerless materials processing in 1-g. Rev. Sci. Instrum. 64, 2961–2970 (1993). https://doi.org/10.1063/1.1144475

    Article  CAS  Google Scholar 

  2. A.J. Rulison, J.L. Watkins, B. Zambrano, Electrostatic containerless processing system. Rev. Sci. Instrum. 68(7), 2615 (1997)

    Article  Google Scholar 

  3. W.K. Rhim, M. Collender, M.T. Hyson, W.T. Simms, D.D. Elleman, Development of an electrostatic positioner for space material processing. Rev. Sci. Instrum. 56, 307–317 (1985). https://doi.org/10.1063/1.1138349

    Article  Google Scholar 

  4. S. Earnshaw, On the nature of molecular forces that regulate the constitution of the luminiferous ether. Trans. Proc. Cambridge Philos. Soc. 7, 97–112 (1842)

    Google Scholar 

  5. J.A. Cross, Electrostatics: Principles, Problems, and Applications (Adam Hilger, Bristol, 1987)

    Google Scholar 

  6. E.H. Brandt, Levitation in physics. Science 243(4889), 349–355 (1989)

    Article  CAS  Google Scholar 

  7. R.W. Hyers, J.R. Rogers, A review of electrostatic levitation for materials research. High Temp. Mater. Process. 27(6), 461–474 (2008)

    Article  CAS  Google Scholar 

  8. H.J. Fecht et al., Measurement of thermophysical properties of metallic melts for high quality castings, in Space Technology and Applications International Forum, ed. by M. S. El-Genk, (American Institute of Physics, Albuquerque, 2001)

    Google Scholar 

  9. D.M. Matson, R.W. Hyers, T. Volkmann, H.-J. Fecht, Phase selection in the mushy-zone: LODESTARS and ELFSTONE projects. J. Phys. Conf. Ser. 327, 012009 (2011). https://doi.org/10.1088/1742-6596/327/1/012009

    Article  CAS  Google Scholar 

  10. T. DebRoy, S.A. David, Physical processes in fusion welding. Rev. Mod. Phys. 67(1), 85–112 (1995)

    Article  CAS  Google Scholar 

  11. M. Mani et al., Measurement science needs for real-time control of additive manufacturing powder bed fusion processes. NIST Pubs., 1–17 (2015). https://doi.org/10.6028/NIST.IR.8036

  12. W.-K. Rhim et al., Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation. Rev. Sci. Instrum. 70(6), 2796 (1999)

    Article  CAS  Google Scholar 

  13. L. Rayleigh, On the capillary phenomena of jets. Proc. R. Soc. Lond. 29, 71–97 (1879)

    Article  Google Scholar 

  14. H. Lamb, On the oscillations of a viscous spheroid. Proc. Lond. Math. Soc. 13(1), 51–66 (1881)

    Article  Google Scholar 

  15. P.-F. Paradis, T. Ishikawa, N. Koike, Non-contact measurements of the surface tension and viscosity of molybdenum using an electrostatic levitation furnace. Int. J. Refract. Met. Hard Mater. 25, 95–100 (2007)

    Article  CAS  Google Scholar 

  16. R.W. Hyers et al., Surface tension and viscosity of quasicrystal-forming Ti–Zr–Ni alloys. Int. J. Thermophys. 25(4), 1155–1162 (July 2004)

    Article  CAS  Google Scholar 

  17. R.C. Bradshaw et al., Machine vision for high-precision volume measurement applied to levitated containerless material processing. Rev. Sci. Instrum. 76(12), 5108–125108 (2005)

    Article  Google Scholar 

  18. P.-F. Paradis et al., Materials properties measurements and particle beam interactions studies using electrostatic levitation. Mater. Sci. Eng. R 76, 1–53 (2014)

    Article  Google Scholar 

  19. K.F. Kelton et al., Studies of nucleation, growth, specific heat, and viscosity of undercooled melts of quasicrystals and polytetrahedral-phase-forming alloys, in Proceedings of the NASA Microgravity Materials Science Conference 2000, Huntsville, AL, NASA/CP-2001-210827, ed. by N. Ramachandran, N. Bennett, D. McCauley, K. Murphy, S. Poindexter, vol. 2, (2001), pp. 353–358

    Google Scholar 

  20. G.W. Lee et al., Local structure of equilibrium and supercooled Ti-Zr-Ni liquids. Phys. Rev. B Condens. Matter Mater. Phys. 77, 184102 (2008)

    Article  Google Scholar 

  21. S. Ozawa et al., Influence of oxygen partial pressure on surface tension and its temperature coefficient of molten iron. J. Appl. Phys. 109, 014902 (2011)

    Article  Google Scholar 

  22. S. Ozawa, Relationship of surface tension, oxygen partial pressure, and temperature for molten iron. Jpn. J. Appl. Phys. 50(11), 11RD05 (2011)

    Article  Google Scholar 

  23. M. Schulz et al., Oxygen partial pressure control for microgravity experiments. Solid State Ionics 225, 332–336 (2012)

    Article  CAS  Google Scholar 

  24. E. Arato et al., Surface oxidability of pure liquid metal and alloys. Appl. Surf. Sci. 258, 2686–2690 (2012)

    Article  CAS  Google Scholar 

  25. J.R. Rogers, M.P. SanSoucie, Containerless processing studies in the MSFC electrostatic levitator, in 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 2012: Nashville, TN, (2012)

    Google Scholar 

  26. M. Schulz, H. Fritze, C. Stenzel, Measurement and control of oxygen partial pressure at elevated temperatures, in The 14th International Meeting on Chemical Sensors 2012: Nuremberg, Germany, (2012)

    Google Scholar 

  27. M.P. SanSoucie et al., Effects of environmental oxygen content and dissolved oxygen on the surface tension and viscosity of liquid nickel. Int. J. Thermophys. 37, 76 (2016)

    Article  Google Scholar 

  28. J. Brillo, J. Wessing, H. Kobatake, H. Fukuyama, Surface tension of liquid Ti with adsorbed oxygen and its prediction. J. Mol. Liq. 290, 111226 (2019)

    Article  CAS  Google Scholar 

  29. J. Lee et al., Non-contact measurement of creep resistance of ultra-high-temperature materials. Mater. Sci. Eng. A 463, 185–196 (2007)

    Article  Google Scholar 

  30. T.J. Rathz et al., Triggered nucleation in Ni60Ni40 using an electrostatic levitator. J. Mater. Sci. Lett. 20, 301–303 (2002)

    Article  Google Scholar 

  31. A.K. Gangopadhyay, G.W. Lee, K.F. Kelton, J.R. Rogers, A.I. Goldman, D.S. Robinson, T.J. Rathz, R.W. Hyers, Beamline electrostatic levitator for in situ high energy x-ray diffraction studies of levitated solids and liquids. Rev. Sci. Instrum. 76, 073901 (2005)

    Article  Google Scholar 

  32. N.A. Mauro, K.F. Kelton, A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids. Rev. Sci. Instrum. 82, 035114 (2011)

    Article  CAS  Google Scholar 

  33. N.A. Mauro et al., Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source. Rev. Sci. Instrum. 87, 013904 (2016)

    Article  CAS  Google Scholar 

  34. T. Meister, H. Werner, G. Lohoefer, D.M. Herlach, H. Unbehauen, Gain-scheduled control of an electrostatic levitator. Control. Eng. Pract. 11, 2 (2003). https://doi.org/10.1016/S0967-0661(02)00102-8

    Article  Google Scholar 

  35. P.-F. Paradis, J. Yu, T. Ishikawa, T. Aoyama, S. Yoda, R. Weber, Contactless density measurement of superheated and undercooled liquid Y3Al5O12. J. Cryst. Growth 249(3–4), 523–530 (2003). https://doi.org/10.1016/S0022-0248(02)02321-7

    Article  CAS  Google Scholar 

  36. M.V. Kumar et al., Density measurement of glass and liquid CaAl2O4 using a pressurized electrostatic levitator. Meas. Sci. Technol. 25, 085301 (2014)

    Article  CAS  Google Scholar 

  37. P.-F. Paradis, T. Ishikawa, J. Yu, S. Yoda, Hybrid electrostatic–aerodynamic levitation furnace for the high-temperature processing of oxide materials on the ground. Rev. Sci. Instrum. 72, 2811–2815 (2001)

    Article  CAS  Google Scholar 

  38. S. Lee et al., Solution electrostatic levitator for measuring surface properties and bulk structures of an extremely supersaturated solution drop above metastable zone width limit. Rev. Sci. Instrum. 88, 055101 (2017)

    Article  Google Scholar 

  39. H. Hwang et al., Real-time monitoring of colloidal crystallization in electrostatically-levitated drops. Small 16, 1907478 (2020). https://doi.org/10.1002/smll.201907478

    Article  CAS  Google Scholar 

  40. I. Egry, A. Diefenbach, W. Dreier, J. Piller, Containerless processing in space – Thermophysical property measurements using electromagnetic levitation. Int. J. Thermophys. 22, 2 (2001). https://doi.org/10.1023/A:1010753805462

    Article  Google Scholar 

  41. T. Ishikawa, J.T. Okada, P.-F. Paradis, V.K. Marahalli, Towards microgravity experiments using the Electrostatic Levitation Furnace (ELF) in the International Space Station (ISS). Trans. Jpn. Soc. Aeronaut. Space. Sci. 12, ISTS29 (2014). https://doi.org/10.2322/tastj.12.Th_15

    Article  Google Scholar 

Download references

Acknowledgments

The preparation of this chapter was supported by the National Aeronautics and Space Administration (NASA), Biological and Physical Sciences (BPS) Division of the Science Mission Directorate (SMD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. SanSoucie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

SanSoucie, M.P. (2022). An Overview of Ground-Based Electrostatic Levitation. In: Fecht, HJ., Mohr, M. (eds) Metallurgy in Space . The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-89784-0_10

Download citation

Publish with us

Policies and ethics