Skip to main content

Reachability is NP-Complete Even for the Simplest Neural Networks

  • Conference paper
  • First Online:
Reachability Problems (RP 2021)

Abstract

We investigate the complexity of the reachability problem for (deep) neural networks: does it compute valid output given some valid input? It was recently claimed that the problem is NP-complete for general neural networks and conjunctive input/output specifications. We repair some flaws in the original upper and lower bound proofs. We then show that NP-hardness already holds for restricted classes of simple specifications and neural networks with just one layer, as well as neural networks with minimal requirements on the occurring parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    While this paper was being processed, Katz et al. published an extended version of their original paper [9]. Unfortunately, the flaws concerning the upper bound are still present in this version.

  2. 2.

    These problems are repaired in [9], but in a slightly different way than we do.

References

  1. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A unified view of piecewise linear neural network verification. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3–8 December 2018, Montréal, Canada, pp. 4795–4804 (2018). https://proceedings.neurips.cc/paper/2018/hash/be53d253d6bc3258a8160556dda3e9b2-Abstract.html

  2. Dixon, M., Klabjan, D., Bang, J.H.: Classification-based financial markets prediction using deep neural networks. Algorithmic Finance 6(3–4), 67–77 (2017). https://doi.org/10.3233/AF-170176

    Article  MATH  Google Scholar 

  3. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_19

    Chapter  Google Scholar 

  4. Grigorescu, S.M., Trasnea, B., Cocias, T.T., Macesanu, G.: A survey of deep learning techniques for autonomous driving. J. Field Robot. 37(3), 362–386 (2020). https://doi.org/10.1002/rob.21918

    Article  Google Scholar 

  5. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012). https://doi.org/10.1109/MSP.2012.2205597

  6. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks: verification, testing, adversarial attack and defence, and interpretability. Comput. Sci. Rev. 37, 100270 (2020). https://doi.org/10.1016/j.cosrev.2020.100270

    Article  MathSciNet  MATH  Google Scholar 

  7. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Comb. 4(4), 373–396 (1984). https://doi.org/10.1007/BF02579150

    Article  MathSciNet  MATH  Google Scholar 

  8. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5

    Chapter  Google Scholar 

  9. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: a calculus for reasoning about deep neural networks. Form Methods Syst. Des. (2021). https://doi.org/10.1007/s10703-021-00363-7

  10. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53(8), 5455–5516 (2020). https://doi.org/10.1007/s10462-020-09825-6

    Article  Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  12. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017). https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  13. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying properties of binarized deep neural networks. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, 2–7 February 2018, pp. 6615–6624. AAAI Press (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16898

  14. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural networks with provable guarantees. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, 13–19 July 2018, Stockholm, Sweden, pp. 2651–2659. ijcai.org (2018). https://doi.org/10.24963/ijcai.2018/368

  15. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural networks with provable guarantees. CoRR abs/1805.02242 (2018). http://arxiv.org/abs/1805.02242

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Sälzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sälzer, M., Lange, M. (2021). Reachability is NP-Complete Even for the Simplest Neural Networks. In: Bell, P.C., Totzke, P., Potapov, I. (eds) Reachability Problems. RP 2021. Lecture Notes in Computer Science(), vol 13035. Springer, Cham. https://doi.org/10.1007/978-3-030-89716-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89716-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89715-4

  • Online ISBN: 978-3-030-89716-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics