Tigran Ananyan and Melvin Hochster. Small subalgebras of polynomial rings and Stillman’s Conjecture. J. Amer. Math. Soc., 33(1):291–309, 2020.
MathSciNet
MATH
Google Scholar
Federico Ardila and Adam Boocher. The closure of a linear space in a product of lines. J. Algebraic Combin., 43(1):199–235, 2016.
MathSciNet
MATH
Google Scholar
Maurice Auslander and David A. Buchsbaum. Homological dimension in local rings. Trans. Amer. Math. Soc., 85:390–405, 1957.
MathSciNet
MATH
Google Scholar
Luchezar L. Avramov. Obstructions to the existence of multiplicative structures on minimal free resolutions. Amer. J. Math., 103(1):1–31, 1981.
MathSciNet
MATH
Google Scholar
Luchezar L Avramov. Infinite free resolutions. In Six lectures on commutative algebra, pages 1–118. Springer, 1998.
Google Scholar
Luchezar L. Avramov and Ragnar-Olaf Buchweitz. Lower bounds for Betti numbers. Compositio Math., 86(2):147–158, 1993.
MathSciNet
MATH
Google Scholar
Luchezar L. Avramov, Ragnar-Olaf Buchweitz, and Srikanth B. Iyengar. Class and rank of differential modules. Invent. Math., 169(1):1–35, 2007.
MathSciNet
MATH
Google Scholar
Luchezar L. Avramov, Andrew R. Kustin, and Matthew Miller. Poincaré series of modules over local rings of small embedding codepth or small linking number. J. Algebra, 118(1):162–204, 1988.
MathSciNet
MATH
Google Scholar
Anna Maria Bigatti. Upper bounds for the Betti numbers of a given Hilbert function. Comm. Algebra, 21(7):2317–2334, 1993.
Google Scholar
Adam Boocher. Free resolutions and sparse determinantal ideals. Math. Res. Lett., 19(4):805–821, 2012.
MathSciNet
MATH
Google Scholar
Adam Boocher and James Seiner. Lower bounds for betti numbers of monomial ideals. Journal of Algebra, 508:445–460, 2018.
MathSciNet
MATH
Google Scholar
Adam Boocher and Derrick Wigglesworth. Large lower bounds for the betti numbers of graded modules with low regularity. Collectanea Mathematica, 72(2):393–410, 2021.
MathSciNet
MATH
Google Scholar
Michael K. Brown and Daniel Erman. Minimal free resolutions of differential modules, 2021.
Google Scholar
Morten Brun and Tim Römer. Betti numbers of \(\mathbb {Z}^n\)-graded modules. Communications in Algebra, 32(12):4589–4599, 2004.
Google Scholar
Winfried Bruns. “Jede” endliche freie Auflösung ist freie Auflösung eines von drei Elementen erzeugten Ideals. J. Algebra, 39(2):429–439, 1976.
MathSciNet
MATH
Google Scholar
Winfried Bruns and Jürgen Herzog. Cohen-Macaulay rings, volume 39 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.
Google Scholar
D Buchsbaum and David Eisenbud. Remarks on ideals and resolutions. In Symp. Math, volume 11, pages 193–204, 1973.
Google Scholar
David A. Buchsbaum and David Eisenbud. Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3. Amer. J. Math., 99(3):447–485, 1977.
MathSciNet
MATH
Google Scholar
David A. Buchsbaum and Dock S. Rim. A generalized koszul complex. Bull. Amer. Math. Soc., 69(3):382–385, 05 1963.
Google Scholar
Lindsay Burch. A note on the homology of ideals generated by three elements in local rings. Proc. Cambridge Philos. Soc., 64:949–952, 1968.
MathSciNet
MATH
Google Scholar
Jennifer Burman. Chang’s theorem on betti numbers of exponent-two modules over regular local rings. Communications in Algebra, 39(2):718–729, 2011.
MathSciNet
MATH
Google Scholar
Gunnar Carlsson. Free \((\mathbb {Z}/2)^3\)-actions on finite complexes. Algebraic topology and algebraic K-theory (Princeton, NJ, 1983), 113:332–344, 1983.
Google Scholar
Gunnar Carlsson. On the homology of finite free \((\mathbb {Z}/2)^n\)-complexes. Inventiones mathematicae, 74(1):139–147, 1983.
Google Scholar
Gunnar Carlsson. Free \((\mathbb {Z}/2)^k\)-actions and a problem in commutative algebra. In Transformation Groups Poznań 1985, pages 79–83. Springer, 1986.
Google Scholar
Giulio Caviglia and Yihui Liang. Explicit stillman bounds for all degrees. arXiv preprint arXiv:2009.02826, 2020.
Google Scholar
Giulio Caviglia and Satoshi Murai. Sharp upper bounds for the Betti numbers of a given Hilbert polynomial. Algebra Number Theory, 7(5):1019–1064, 2013.
MathSciNet
MATH
Google Scholar
Shou-Te Chang. Betti numbers of modules of exponent two over regular local rings. Journal of Algebra, 193(2):640–659, 1997.
MathSciNet
MATH
Google Scholar
H Charalambous and G Evans. Problems on betti numbers of finite length modules. Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990), 2:25–33, 1992.
MathSciNet
MATH
Google Scholar
Hara Charalambous. Betti numbers of multigraded modules. Journal of Algebra, 137(2):491–500, 1991.
MathSciNet
MATH
Google Scholar
Hara Charalambous and E. Graham Evans. A deformation theory approach to Betti numbers of finite length modules. J. Algebra, 143(1):246–251, 1991.
Google Scholar
Hara Charalambous, E. Graham Evans, and Matthew Miller. Betti numbers for modules of finite length. Proc. Amer. Math. Soc., 109(1):63–70, 1990.
Google Scholar
A. Conca, E. De Negri, and E. Gorla. Universal Gröbner bases and Cartwright-Sturmfels ideals. Int. Math. Res. Not. IMRN, (7):1979–1991, 2020.
MATH
Google Scholar
Aldo Conca, Emanuela De Negri, and Elisa Gorla. Universal Gröbner bases for maximal minors. Int. Math. Res. Not. IMRN, (11):3245–3262, 2015.
Google Scholar
Aldo Conca and Matteo Varbaro. Square-free Gröbner degenerations. Invent. Math., 221(3):713–730, 2020.
MathSciNet
MATH
Google Scholar
Justin W DeVries. On the rank of multi-graded differential modules. arXiv preprint arXiv:1011.2167, 2010.
Google Scholar
Daniel Dugger. Betti numbers of almost complete intersections. Illinois J. Math., 44(3):531–541, 2000.
MathSciNet
MATH
Google Scholar
David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.
Google Scholar
David Eisenbud, Gunnar Fløystad, and Jerzy Weyman. The existence of equivariant pure free resolutions (existence de résolutions pures et libres equivariantes). In Annales de l’institut Fourier, volume 61, pages 905–926, 2011.
Google Scholar
David Eisenbud and Jee Koh. Some linear syzygy conjectures. Adv. Math., 90(1):47–76, 1991.
MathSciNet
MATH
Google Scholar
David Eisenbud and Frank-Olaf Schreyer. Betti numbers of graded modules and cohomology of vector bundles. Journal of the American Mathematical Society, 22(3):859–888, 2009.
MathSciNet
MATH
Google Scholar
Daniel Erman. A special case of the Buchsbaum-Eisenbud-Horrocks rank conjecture. Math. Res. Lett., 17(6):1079–1089, 2010.
MathSciNet
MATH
Google Scholar
Daniel Erman, Steven V. Sam, and Andrew Snowden. Big polynomial rings and Stillman’s conjecture. Invent. Math., 218(2):413–439, 2019.
MathSciNet
MATH
Google Scholar
Daniel Erman, Steven V. Sam, and Andrew Snowden. Cubics in 10 variables vs. cubics in 1000 variables: uniformity phenomena for bounded degree polynomials. Bull. Amer. Math. Soc. (N.S.), 56(1):87–114, 2019.
Google Scholar
E. Graham Evans and Phillip Griffith. The syzygy problem. Ann. of Math. (2), 114(2):323–333, 1981.
Google Scholar
E Graham Evans and Phillip Griffith. Syzygies, volume 106. Cambridge University Press, 1985.
Google Scholar
Stephen Halperin. Le complexe de koszul en algebre et topologie. In Annales de l’institut Fourier, volume 37, pages 77–97, 1987.
Google Scholar
Robin Hartshorne. Algebraic vector bundles on projective spaces: a problem list. Topology, 18(2):117–128, 1979.
MathSciNet
MATH
Google Scholar
Jürgen Herzog and Michael Kühl. On the bettinumbers of finite pure and linear resolutions. Communications in Algebra, 12(13):1627–1646, 1984.
MathSciNet
MATH
Google Scholar
David Hilbert. Ueber die Theorie der algebraischen Formen. Math. Ann., 36(4):473–534, 1890.
MathSciNet
MATH
Google Scholar
Heather A. Hulett. Maximum Betti numbers of homogeneous ideals with a given Hilbert function. Comm. Algebra, 21(7):2335–2350, 1993.
MathSciNet
MATH
Google Scholar
Craig Huneke, Paolo Mantero, Jason McCullough, and Alexandra Seceleanu. The projective dimension of codimension two algebras presented by quadrics. J. Algebra, 393:170–186, 2013.
MathSciNet
MATH
Google Scholar
Craig Huneke and Bernd Ulrich. The structure of linkage. Ann. of Math. (2), 126(2):277–334, 1987.
MathSciNet
MATH
Google Scholar
Srikanth B Iyengar and Mark E Walker. Examples of finite free complexes of small rank and small homology. Acta Mathematica, 221(1):143–158, 2018.
Google Scholar
Ernst Kunz. Almost complete intersections are not Gorenstein rings. J. Algebra, 28:111–115, 1974.
MathSciNet
MATH
Google Scholar
Andrew R. Kustin. Gorenstein algebras of codimension four and characteristic two. Comm. Algebra, 15(11):2417–2429, 1987.
MathSciNet
MATH
Google Scholar
Andrew R Kustin and Matthew Miller. Algebra structures on minimal resolutions of gorenstein rings of embedding codimension four. Mathematische Zeitschrift, 173(2):171–184, 1980.
Google Scholar
Andrew R Kustin and Matthew Miller. Classification of the Tor-algebras of codimension four Gorenstein local rings. Mathematische Zeitschrift, 190(3):341–355, 1985.
Google Scholar
F. S. Macaulay. The algebraic theory of modular systems. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1994. Revised reprint of the 1916 original, With an introduction by Paul Roberts.
Google Scholar
Jason McCullough and Irena Peeva. Infinite graded free resolutions. Commutative algebra and noncommutative algebraic geometry, 1:215–257, 2015.
MathSciNet
MATH
Google Scholar
Jason McCullough and Alexandra Seceleanu. Bounding Projective Dimension, pages 551–576. Springer New York, New York, NY, 2013.
Google Scholar
Fatemeh Mohammadi and Johannes Rauh. Prime splittings of determinantal ideals. Comm. Algebra, 46(5):2278–2296, 2018.
MathSciNet
MATH
Google Scholar
Vicente Muñoz. Toral rank conjecture. Preprint.
Google Scholar
Keith Pardue. Deformation classes of graded modules and maximal Betti numbers. Illinois J. Math., 40(4):564–585, 1996.
MathSciNet
MATH
Google Scholar
V. Reiner and V. Welker. Linear syzygies of Stanley-Reisner ideals. Math. Scand., 89(1):117–132, 2001.
MathSciNet
MATH
Google Scholar
Tim Römer. Bounds for Betti numbers. J. Algebra, 249(1):20–37, 2002.
MathSciNet
MATH
Google Scholar
Tim Römer. Betti numbers and shifts in minimal graded free resolutions. Illinois J. Math., 54(2):449–467, 2010.
MathSciNet
MATH
Google Scholar
Larry Santoni. Horrocks’ question for monomially graded modules. Pacific J. Math., 141(1):105–124, 1990.
MathSciNet
MATH
Google Scholar
Jean-Pierre Serre. Sur la dimension homologique des anneaux et des modules noethériens. In Proceedings of the international symposium on algebraic number theory, Tokyo & Nikko, 1955, pages 175–189. Science Council of Japan, Tokyo, 1956.
Google Scholar
Mark E Walker. Total betti numbers of modules of finite projective dimension. Annals of Mathematics, pages 641–646, 2017.
Google Scholar
Mark E. Walker. Total betti numbers of modules of finite projective dimension, arXiv v1. arXiv:1702.02560v1, 2017.
Google Scholar