Skip to main content

Symbolic Rees Algebras

  • 306 Accesses

Abstract

We survey old and new approaches to the study of symbolic powers of ideals. Our focus is on the symbolic Rees algebra of an ideal, viewed both as a tool to investigate its symbolic powers and as a source of challenging problems in its own right. We provide an invitation to this area of investigation by stating several open questions.

Keywords

  • Symbolic powers
  • Symbolic Rees algebra
  • Containment problem

2010 Mathematics Subject Classification

  • Primary: 13A15
  • Secondary: 13H05

Dedicated to David Eisenbud on the occasion of his 75th birthday.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-89694-2_11
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-89694-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Notes

  1. 1.

    The book [105] is a comprehensive reference on the subject of integral closure.

  2. 2.

    For details on Rees valuations and their applications the reader is invited to consult [105, §10.1].

References

  1. Emil Artin and John T. Tate, A note on finite ring extensions, J. Math. Soc. Japan 3 (1951), 74–77. MR 44509

    Google Scholar 

  2. Carlos E. N. Bahiano, Symbolic powers of edge ideals, J. Algebra 273 (2004), no. 2, 517–537. MR 2037709

    Google Scholar 

  3. Cristiano Bocci, Susan M. Cooper, and Brian Harbourne, Containment results for ideals of various configurations of points in PN, J. Pure Appl. Algebra 218 (2014), no. 1, 65–75. MR 3120609

    Google Scholar 

  4. Thomas Bauer, Sandra Di Rocco, Brian Harbourne, MichałKapustka, Andreas Knutsen, Wioletta Syzdek, and Tomasz Szemberg, A primer on Seshadri constants, Interactions of classical and numerical algebraic geometry, Contemp. Math., vol. 496, Amer. Math. Soc., Providence, RI, 2009, pp. 33–70. MR 2555949

    Google Scholar 

  5. Thomas Bauer, Sandra Di Rocco, Brian Harbourne, Jack Huizenga, Alexandra Seceleanu, and Tomasz Szemberg, Negative curves on symmetric blowups of the projective plane, resurgences, and Waldschmidt constants, Int. Math. Res. Not. IMRN 2019 (2018), no. 24, 7459–7514.

    MathSciNet  CrossRef  Google Scholar 

  6. Sankhaneel Bisui, Eloísa Grifo, Huy Tài Hà, and Thái Thành Nguy\(\tilde {\text{\^e}}\)n, Chudnovsky’s conjecture and the stable Harbourne-Huneke containment, arXiv:2004.11213 (2020).

    Google Scholar 

  7. _________ , Demailly’s conjecture and the containment problem, arXiv:2009.05022v2 (2020).

    Google Scholar 

  8. Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956 (95h:13020)

    Google Scholar 

  9. Cristiano Bocci and Brian Harbourne, Comparing powers and symbolic powers of ideals, J. Algebraic Geom. 19 (2010), no. 3, 399–417. MR 2629595

    Google Scholar 

  10. Cristiano Bocci and Brian Harbourne, The resurgence of ideals of points and the containment problem, Proc. Amer. Math. Soc. 138, no. 4 (2010), 175–1190.

    Google Scholar 

  11. Winfried Bruns, Bogdan Ichim, Tim Römer, Richard Sieg, and Christof Söger, Normaliz. algorithms for rational cones and affine monoids, Available at https://www.normaliz.uni-osnabrueck.de.

  12. Markus P. Brodmann, Asymptotic stability of Ass(MInM), Proc. Amer. Math. Soc. 74 (1979), no. 1, 16–18. MR 521865 (80c:13012)

    Google Scholar 

  13. Susan M. Cooper, Robert J. D. Embree, Huy Tài Hà, and Andrew H. Hoefel, Symbolic powers of monomial ideals, Proc. Edinb. Math. Soc. (2) 60 (2017), no. 1, 39–55. MR 3589840

    Google Scholar 

  14. Adam Czapliński, Agata Główka, Grzegorz Malara, Magdalena Lampa-Baczyńska, Patrycja Łuszcz-Świdecka, Piotr Pokora, and Justyna Szpond, A counterexample to the containment I(3) ⊂I2over the reals, Adv. Geom. 16 (2016), no. 1, 77–82. MR 3451265

    Google Scholar 

  15. Steven Dale Cutkosky, Jürgen Herzog, and Hema Srinivasan, Asymptotic growth of algebras associated to powers of ideals, Math. Proc. Cambridge Philos. Soc. 148 (2010), no. 1, 55–72. MR 2575372

    Google Scholar 

  16. G. V. Chudnovsky, Singular points on complex hypersurfaces and multidimensional Schwarz lemma, Seminar on Number Theory, Paris 1979–80, Progr. Math., vol. 12, Birkhäuser, Boston, Mass., 1981, pp. 29–69. MR 633888

    Google Scholar 

  17. Yu-Lin Chang and Shin-Yao Jow, Demailly’s conjecture on Waldschmidt constants for sufficiently many very general points inn, J. Number Theory 207 (2020), 138–144. MR 4017942

    Google Scholar 

  18. R. C. Cowsik, Symbolic powers and number of defining equations, Algebra and its applications (New Delhi, 1981), Lecture Notes in Pure and Appl. Math., vol. 91, Dekker, New York, 1984, pp. 13–14. MR 750839

    Google Scholar 

  19. Steven Dale Cutkosky, Symbolic algebras of monomial primes, J. Reine Angew. Math. 416 (1991), 71–89. MR 1099946

    Google Scholar 

  20. Michael DiPasquale and Ben Drabkin, On resurgence via asymptotic resurgence, arXiv:2003.06980v2 (2020).

    Google Scholar 

  21. Hailong Dao, Alessandro De Stefani, Eloísa Grifo, Craig Huneke, and Luis Núñez-Betancourt, Symbolic powers of ideals, Springer Proceedings in Mathematics & Statistics, Springer, 2017.

    MATH  Google Scholar 

  22. J.-P. Demailly, Formules de Jensen en plusieurs variables et applications arithmétiques, Bull. Soc. Math. France 110 (1982), no. 1, 75–102. MR 662130

    Google Scholar 

  23. Benjamin Drabkin and Lorenzo Guerrieri, Asymptotic invariants of ideals with Noetherian symbolic Rees algebra and applications to cover ideals, J. Pure Appl. Algebra 224 (2020), no. 1, 300–319. MR 3986423

    Google Scholar 

  24. Wolfram Decker, Gert-Martin Greuel, and Gerhard Pfister, Primary decomposition: algorithms and comparisons, Algorithmic algebra and number theory (Heidelberg, 1997), Springer, Berlin, 1999, pp. 187–220. MR 1672046

    Google Scholar 

  25. Ben Drabkin, Eloísa Grifo, Alexandra Seceleanu, and Branden Stone, Calculations involving symbolic powers, J. Softw. Algebra Geom. 9 (2019), no. 1, 71–80. MR 4018689

    Google Scholar 

  26. Clare D’Cruz and Mousumi Mandal, Symbolic blowup algebras and invariants associated to certain monomial curves in3, Comm. Algebra 48 (2020), no. 9, 3724–3742. MR 4124654

    Google Scholar 

  27. Hailong Dao and Jonathan Montaño, Symbolic analytic spread: upper bound and applications, 2020, arXiv:1907.07081v2.

    Google Scholar 

  28. Ben Drabkin and Alexandra Seceleanu, Singular loci of reflection arrangements and the containment problem, arXiv:2002.05353 (2020).

    Google Scholar 

  29. Marcin Dumnicki, Tomasz Szemberg, and Halszka Tutaj-Gasińska, Counterexamples to the I(3) ⊆I2containment, Journal of Algebra 393 (2013), 24–29.

    MathSciNet  CrossRef  Google Scholar 

  30. Marcin Dumnicki and Halszka Tutaj-Gasińska, A containment result in Pnand the Chudnovsky conjecture, Proc. Amer. Math. Soc. 145 (2017), no. 9, 3689–3694. MR 3665024

    Google Scholar 

  31. Marcin Dumnicki, Containments of symbolic powers of ideals of generic points in3, Proc. Amer. Math. Soc. 143 (2015), no. 2, 513–530. MR 3283641

    Google Scholar 

  32. David Eisenbud and Melvin Hochster, A Nullstellensatz with nilpotents and Zariski’s main lemma on holomorphic functions, J. Algebra 58 (1979), no. 1, 157–161. MR 535850

    Google Scholar 

  33. Shalom Eliahou, Symbolic powers of monomial curves, J. Algebra 117 (1988), no. 2, 437–456. MR 957453

    Google Scholar 

  34. Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith, Uniform bounds and symbolic powers on smooth varieties, Inventiones Math 144 (2) (2001), 241–25.

    MathSciNet  CrossRef  Google Scholar 

  35. Hélène Esnault and Eckart Viehweg, Sur une minoration du degré d’hypersurfaces s’annulant en certains points, Math. Ann. 263 (1983), no. 1, 75–86. MR 697332

    Google Scholar 

  36. Cesar A. Escobar, Rafael H. Villarreal, and Yuji Yoshino, Torsion freeness and normality of blowup rings of monomial ideals, Commutative algebra, Lect. Notes Pure Appl. Math., vol. 244, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 69–84. MR 2184791

    Google Scholar 

  37. Florian Enescu and Yongwei Yao, The Frobenius complexity of a local ring of prime characteristic, J. Algebra 459 (2016), 133–156. MR 3503969

    Google Scholar 

  38. Louiza Fouli, Paolo Mantero, and Yu Xie, Chudnovsky’s conjecture for very general points in \(\Bbb P^N_k\), J. Algebra 498 (2018), 211–227. MR 3754412

    Google Scholar 

  39. Gene Freudenburg, A survey of counterexamples to Hilbert’s fourteenth problem, Serdica Math. J. 27 (2001), no. 3, 171–192. MR 1917641

    Google Scholar 

  40. Javier González Anaya, José Luis González, and Kalle Karu, Constructing non-Mori dream spaces from negative curves, J. Algebra 539 (2019), 118–137. MR 3995238

    Google Scholar 

  41. _________ , On a family of negative curves, J. Pure Appl. Algebra 223 (2019), no. 11, 4871–4887. MR 3955045

    Google Scholar 

  42. Javier González-Anaya, José Luis González, and Kalle Karu, Curves generating extremal rays in blowups of weighted projective planes, arXiv:2002.07123 (2020).

    Google Scholar 

  43. Eloísa Grifo and Craig Huneke, Symbolic powers of ideals defining F-pure and strongly F-regular rings, Int. Math. Res. Not. IMRN (2019), no. 10, 2999–3014. MR 3952556

    Google Scholar 

  44. Eloísa Grifo, Craig Huneke, and Vivek Mukundan, Expected resurgences and symbolic powers of ideals, Journal of the London Mathematical Society 102 (2020), no. 2, 453–469.

    MathSciNet  CrossRef  Google Scholar 

  45. _________ , Expected resurgences of ideals defining Gorenstein rings, 2020, arXiv:2007.12051v2.

    Google Scholar 

  46. A. V. Geramita, B. Harbourne, J. Migliore, and U. Nagel, Matroid configurations and symbolic powers of their ideals, Trans. Amer. Math. Soc. 369 (2017), no. 10, 7049–7066. MR 3683102

    Google Scholar 

  47. S. Goto, M. Herrmann, K. Nishida, and O. Villamayor, On the structure of Noetherian symbolic Rees algebras, Manuscripta Math. 67 (1990), no. 2, 197–225. MR 1042238

    Google Scholar 

  48. Elena Guardo, Brian Harbourne, and Adam Van Tuyl, Asymptotic resurgences for ideals of positive dimensional subschemes of projective space, Adv. Math. 246 (2013), 114–127. MR 3091802

    Google Scholar 

  49. José Luis González and Kalle Karu, Some non-finitely generated Cox rings, Compos. Math. 152 (2016), no. 5, 984–996. MR 3505645

    Google Scholar 

  50. _________ , Examples of non-finitely generated Cox rings, Canad. Math. Bull. 62 (2019), no. 2, 267–285. MR 3952517

    Google Scholar 

  51. Shiro Goto and Mayumi Morimoto, Non-Cohen-Macaulay symbolic blow-ups for space monomial curves, Proc. Amer. Math. Soc. 116 (1992), no. 2, 305–311. MR 1095226

    Google Scholar 

  52. Eloísa Grifo, Linquan Ma, and Karl Schwede, Symbolic power containments in singular rings in positive characteristic, arXiv:1911.06307 (2019).

    Google Scholar 

  53. Shiro Goto, Koji Nishida, and Yasuhiro Shimoda, Topics on symbolic Rees algebras for space monomial curves, Nagoya Math. J. 124 (1991), 99–132.

    MathSciNet  CrossRef  Google Scholar 

  54. Shiro Goto, Koji Nishida, and Keiichi Watanabe, Non-Cohen-Macaulay symbolic blow-ups for space monomial curves and counterexamples to Cowsik’s question, Proceedings of the American Mathematical Society 120 (1994), no. 2, 383–392.

    MathSciNet  MATH  Google Scholar 

  55. Eloísa Grifo, Symbolic powers and the containment problem, PhD Thesis (2018).

    Google Scholar 

  56. Eloísa Grifo, A stable version of Harbourne’s Conjecture and the containment problem for space monomial curves, J. Pure Appl. Algebra 224 (2020), no. 12, 106435, 23. MR 4101479

    Google Scholar 

  57. D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry.

    Google Scholar 

  58. Zhuang He, Mori dream spaces and blow-ups of weighted projective spaces, J. Pure Appl. Algebra 223 (2019), no. 10, 4426–4445. MR 3958097

    Google Scholar 

  59. Jürgen Herzog, Generators and relations of abelian semigroups and semigroup rings, manuscripta mathematica 3 (1970), no. 2, 175–193.

    Google Scholar 

  60. Melvin Hochster and Craig Huneke, Comparison of symbolic and ordinary powers of ideals, Invent. Math. 147 (2002), no. 2, 349–369. MR 1881923

    Google Scholar 

  61. Brian Harbourne and Craig Huneke, Are symbolic powers highly evolved?, J. Ramanujan Math. Soc. 28A (2013), 247–266. MR 3115195

    Google Scholar 

  62. Jürgen Herzog, Takayuki Hibi, and Ngô Viêt Trung, Symbolic powers of monomial ideals and vertex cover algebras, Adv. Math. 210 (2007), no. 1, 304–322. MR 2298826

    Google Scholar 

  63. Craig Huneke and Daniel Katz, Uniform symbolic topologies in abelian extensions, Trans. Amer. Math. Soc. 372 (2019), no. 3, 1735–1750. MR 3976575

    Google Scholar 

  64. Craig Huneke, Daniel Katz, and Javid Validashti, Uniform Equivalente of Symbolic and Adic Topologies, Illinois Journal of Mathematics 53 (2009), no. 1, 325–338.

    MathSciNet  CrossRef  Google Scholar 

  65. _________ , Uniform symbolic topologies and finite extensions, J. Pure Appl. Algebra 219 (2015), no. 3, 543–550. MR 3279373

    Google Scholar 

  66. _________ , Corrigendum to “Uniform symbolic topologies and finite extensions” [J. Pure Appl. Algebra 219 (2015) 543-550], J. Pure Appl. Algebra 225 (2021), no. 6, 106587. MR 4197292

    Google Scholar 

  67. Melvin Hochster, Criteria for equality of ordinary and symbolic powers of primes., Mathematische Zeitschrift 133 (1973), 53–66.

    MathSciNet  CrossRef  Google Scholar 

  68. Serkan Hoşten and Gregory G. Smith, Monomial ideals, Computations in algebraic geometry with Macaulay 2, Algorithms Comput. Math., vol. 8, Springer, Berlin, 2002, pp. 73–100. MR 1949549

    Google Scholar 

  69. Brian Harbourne and Alexandra Seceleanu, Containment counterexamples for ideals of various configurations of points in PN, J. Pure Appl. Algebra 219 (2015), no. 4, 1062–1072. MR 3282125

    Google Scholar 

  70. Jürgen Herzog and Bernd Ulrich, Self-linked curve singularities, Nagoya Math. J. 120 (1990), 129–153.

    MathSciNet  CrossRef  Google Scholar 

  71. Reinhold Hübl, Powers of elements and monomial ideals, Comm. Algebra 33 (2005), no. 10, 3771–3781. MR 2175465

    Google Scholar 

  72. Craig Huneke, On the finite generation of symbolic blow-ups, Math. Z. 179 (1982), no. 4, 465–472. MR 652854

    Google Scholar 

  73. _________ , The primary components of and integral closures of ideals in 3-dimensional regular local rings, Mathematische Annalen 275 (1986), no. 4, 617–635.

    Google Scholar 

  74. _________ , Hilbert functions and symbolic powers., The Michigan Mathematical Journal 34 (1987), no. 2, 293–318.

    Google Scholar 

  75. Marek Janasz, Magdalena Lampa-Baczyńska, and Grzegorz Malara, New phenomena in the containment problem for simplicial arrangements, 2018, arXiv:1812.04382.

    Google Scholar 

  76. Mark R. Johnson and Michael E. Reed, Multiplicities of monomial space curves with non-Noetherian symbolic blowups, Comm. Algebra 43 (2015), no. 10, 4170–4180. MR 3366568

    Google Scholar 

  77. Kazuhiko Kurano and Naoyuki Matsuoka, On finite generation of symbolic Rees rings of space monomial curves and existence of negative curves, J. Algebra 322 (2009), no. 9, 3268–3290. MR 2567420

    Google Scholar 

  78. Daniel Katz and Louis J. Ratliff, Jr., On the symbolic Rees ring of a primary ideal, Comm. Algebra 14 (1986), no. 5, 959–970. MR 834477

    Google Scholar 

  79. Kazuhiko Kurano, Positive characteristic finite generation of symbolic Rees algebras and Roberts’ counterexamples to the fourteenth problem of Hilbert, Tokyo J. Math. 16 (1993), no. 2, 473–496. MR 1247667

    Google Scholar 

  80. Álvaro Lozano-Robledo, Elliptic curves, modular forms, and their L-functions, Student Mathematical Library, vol. 58, American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 2011, IAS/Park City Mathematical Subseries. MR 2757255

    Google Scholar 

  81. Gennady Lyubeznik, On the arithmetical rank of monomial ideals, J. Algebra 112 (1988), no. 1, 86–89. MR 921965

    Google Scholar 

  82. Hideyuki Matsumura, Commutative algebra, second ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR MR575344 (82i:13003)

    Google Scholar 

  83. José Martínez-Bernal, Carlos Rentería-Márquez, and Rafael H. Villarreal, Combinatorics of symbolic Rees algebras of edge ideals of clutters, Commutative algebra and its connections to geometry, Contemp. Math., vol. 555, Amer. Math. Soc., Providence, RI, 2011, pp. 151–164. MR 2882681

    Google Scholar 

  84. Stephen McAdam, Asymptotic prime divisors and analytic spreads, Proc. Amer. Math. Soc. 80 (1980), no. 4, 555–559. MR 587926

    Google Scholar 

  85. _________ , Asymptotic prime divisors, Lecture Notes in Mathematics, vol. 1023, Springer-Verlag, Berlin, 1983. MR 722609

    Google Scholar 

  86. Marcel Morales, Noetherian symbolic blow-ups, J. Algebra 140 (1991), no. 1, 12–25. MR 1114901

    Google Scholar 

  87. Linquan Ma and Karl Schwede, Perfectoid multiplier/test ideals in regular rings and bounds on symbolic powers, Invent. Math. 214 (2018), no. 2, 913–955. MR 3867632

    Google Scholar 

  88. Grzegorz Malara and Justyna Szpond, On codimension two flats in Fermat-type arrangements, Multigraded algebra and applications, Springer Proc. Math. Stat., vol. 238, Springer, Cham, 2018, pp. 95–109. MR 3815081

    Google Scholar 

  89. Grzegorz Malara, Tomasz Szemberg, and Justyna Szpond, On a conjecture of Demailly and new bounds on Waldschmidt constants inN, J. Number Theory 189 (2018), 211–219. MR 3788648

    Google Scholar 

  90. David Mumford, Hilbert’s fourteenth problem–the finite generation of subrings such as rings of invariants, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, Ill., 1974), 1976, pp. 431–444. MR 0435076

    Google Scholar 

  91. Masayoshi Nagata, On the 14-th problem of Hilbert, Amer. J. Math. 81 (1959), 766–772. MR 105409

    Google Scholar 

  92. _________ , Local rings, Interscience, 1962.

    Google Scholar 

  93. Emmy Noether, Idealtheorie in Ringbereichen, Mathematische Annalen 83 (1921).

    Google Scholar 

  94. Uwe Nagel and Alexandra Seceleanu, Ordinary and symbolic Rees algebras for ideals of Fermat point configurations, J. Algebra 468 (2016), 80–102. MR 3550859

    Google Scholar 

  95. David Rees, On a problem of Zariski, Illinois Journal of Mathematics 2 (1958), no. 1, 145–149.

    MathSciNet  CrossRef  Google Scholar 

  96. Michael E. Reed, Generation of symbolic blow-ups of monomial space curves in degree four, Communications in Algebra 33 (2005), no. 8, 2541–2555.

    MathSciNet  CrossRef  Google Scholar 

  97. _________ , Generation in degree four of symbolic blowups of self-linked monomial space curves, Communications in Algebra 37 (2009), no. 12, 4346–4365.

    MathSciNet  CrossRef  Google Scholar 

  98. Paul C. Roberts, A prime ideal in a polynomial ring whose symbolic blow-up is not Noetherian, Proc. Amer. Math. Soc. 94 (1985), no. 4, 589–592. MR 792266

    Google Scholar 

  99. Paul Roberts, An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert’s fourteenth problem, J. Algebra 132 (1990), no. 2, 461–473. MR 1061491

    Google Scholar 

  100. Lorenzo Robbiano and Giuseppe Valla, Primary powers of a prime ideal, Pacific J. Math. 63 (1976), no. 2, 491–498. MR 409492

    Google Scholar 

  101. Peter Schenzel, Symbolic powers of prime ideals and their topology, Proc. Amer. Math. Soc. 93 (1985), no. 1, 15–20. MR 766518

    Google Scholar 

  102. _________ , Finiteness of relative Rees rings and asymptotic prime divisors, Math. Nachr. 129 (1986), 123–148. MR 864628

    Google Scholar 

  103. _________ , Examples of Noetherian symbolic blow-up rings, Rev. Roumaine Math. Pures Appl. 33 (1988), no. 4, 375–383. MR 950134

    Google Scholar 

  104. _________ , Filtrations and noetherian symbolic blow-up rings, Proceedings of the American Mathematical Society 102 (1988), no. 4, 817–822.

    Google Scholar 

  105. Irena Swanson and Craig Huneke, Integral closure of ideals, rings, and modules, vol. 13, Cambridge University Press, 2006.

    Google Scholar 

  106. Anurag K. Singh, Multi-symbolic Rees algebras and strong F-regularity, Math. Z. 235 (2000), no. 2, 335–344. MR 1795511

    Google Scholar 

  107. H. Skoda, Estimations L2pour l’opérateur \(\overline \partial \) et applications arithmétiques, Journées sur les Fonctions Analytiques (Toulouse, 1976), 1977, pp. 314–323. Lecture Notes in Math., Vol. 578. MR 0460723

    Google Scholar 

  108. Hema Srinivasan, On finite generation of symbolic algebras of monomial primes, Comm. Algebra 19 (1991), no. 9, 2557–2564. MR 1125189

    Google Scholar 

  109. Akiyoshi Sannai and Hiromu Tanaka, Infinitely generated symbolic Rees algebras over finite fields. Algebra Number Theory 13 (2019), no. 8, 1879-1891.

    MathSciNet  CrossRef  Google Scholar 

  110. Irena Swanson, Linear equivalence of topologies, Math. Zeitschrift 234 (2000), 755–775.

    MathSciNet  CrossRef  Google Scholar 

  111. 4ti2 team, 4ti2—a software package for algebraic, geometric and combinatorial problems on linear spaces.

    Google Scholar 

  112. Wolmer V. Vasconcelos, Arithmetic of blowup algebras, London Mathematical Society Lecture Note Series, vol. 195, Cambridge University Press, Cambridge, 1994. MR 1275840

    Google Scholar 

  113. Michel Waldschmidt, Propriétés arithmétiques de fonctions de plusieurs variables. II, Séminaire Pierre Lelong (Analyse) année 1975/76, 1977, pp. 108–135. Lecture Notes in Math., Vol. 578. MR 0453659

    Google Scholar 

  114. Robert M. Walker, Rational singularities and uniform symbolic topologies, Illinois J. Math. 60 (2016), no. 2, 541–550. MR 3680547

    Google Scholar 

  115. _________ , Uniform Harbourne-Huneke Bounds via Flat Extensions, arXiv:1608.02320 (2016).

    Google Scholar 

  116. Rober M. Walker, Uniform symbolic topologies in normal toric rings, arXiv:1706.06576 (2017).

    Google Scholar 

  117. Keiichi Watanabe, Infinite cyclic covers of strongly F-regular rings, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 423–432. MR 1266196

    Google Scholar 

  118. Oscar Zariski, A fundamental lemma from the theory of holomorphic functions on an algebraic variety, Ann. Mat. Pura Appl. (4) 29 (1949), 187–198. MR 0041488

    Google Scholar 

  119. O. Zariski, Interprétations algébrico-géométriques du quatorzième problème de Hilbert, Bull. Sci. Math. (2) 78 (1954), 155–168. MR 65217

    Google Scholar 

Download references

Acknowledgements

The first author is supported by NSF grant DMS-2001445, now DMS-2140355. The second author is supported by NSF grant DMS-2101225. We thank Craig Huneke for help with tracking down the history of the terminology “symbolic Rees algebra”, and José Gonzalez for discussions regarding Mori dream spaces. We also thank Thomas Polstra for pointing us to [66], Elena Guardo for finding a typo in a previous version of the paper, and Kazuhiko Kurano for his comments on a previous version and for pointing us to [109]. Finally, we thank Anurag Singh for very detailed comments on an earlier version of the survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Seceleanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Grifo, E., Seceleanu, A. (2021). Symbolic Rees Algebras. In: Peeva, I. (eds) Commutative Algebra. Springer, Cham. https://doi.org/10.1007/978-3-030-89694-2_11

Download citation