Skip to main content

Advances in the Management of Invasive Plants

  • Chapter
  • First Online:
Global Plant Invasions

Abstract

Invasive plant management has moved beyond the application of conventional control methods, and new methods and approaches are constantly being developed. In this chapter, we summarize a number of recent advances in the management of different stages of the invasion process of alien plants. We discuss advances in managing the whole invasion process, such as systematic examinations (horizon scanning) to identify potential future invaders as well as management issues involving stakeholders in the development and implementation of management actions and managing pathways of introduction and spread. We also discuss advances in the management of particular stages. At the introduction stage, covering the important pathway of invasive ornamental plants, the development of noninvasive cultivars (noninvasive crop ideotypes) could offer a management solution for some ornamental alien plants. For monitoring the establishment and spread stages, we discuss the use of technologies to analyze DNA sampled directly from the environment (environmental DNA) and detect and monitor the physical characteristics of particular areas (remote sensing) and the contributions of volunteer citizens (citizen science). At the spread stage, further technological advances are expected from editing genes (CRISPR-Cas9 gene drive) in biological control, while for some species, utilization or acceptance could offer viable alternatives. Modelling approaches are considered as a useful tool for decision-making on management actions with limited resources. Finally, focusing on increasing the resistance of ecosystems against invasive plants seems to be a promising approach for ecosystem-level management. While many of these advances have shown great potential for improving invasive plant management, we still find a lack of collection of evidence for their effectiveness in real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acker J, Williams R, Chiu L et al (2014) Remote sensing from satellites. In: Reference module in earth systems and environmental sciences. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.09440-9

    Chapter  Google Scholar 

  • Alomar O, Batlle A, Brunetti JM et al (2016) Development and testing of the media monitoring tool MedISys for the monitoring, early identification and reporting of existing and emerging plant health threats. EFSA Support Publ 13:EN-1118

    Google Scholar 

  • Anderson NO, Gomez N, Galatowitsch SM (2006) A non-invasive crop ideotype to reduce invasive potential. Euphytica 148:185–202

    Article  Google Scholar 

  • Ansong M, Pickering C (2013) Are weeds hitchhiking a ride on your car? A systematic review of seed dispersal on cars. PLoS One 8:e80275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajwa AA, Nguyen T, Navie S et al (2018) Weed seed spread and its prevention: the role of roadside wash down. J Environ Manag 208:8–14

    Article  Google Scholar 

  • Barbier EB, Gwatipedza J, Knowler D et al (2011) The north American horticultural industry and the risk of plant invasion. Agric Econ 2:113–130

    Article  Google Scholar 

  • Barbier EB, Knowler D, Gwatipedza J et al (2013) Implementing policies to control invasive plant species. Bioscience 63:132–138

    Article  Google Scholar 

  • Beinart W, Wotshela L (2003) Prickly pear in the eastern cape since the 1950s-perspectives from interviews. KronoScope 1:191–209

    Google Scholar 

  • Bernes C, Bullock JM, Jakobsson S et al (2017) How are biodiversity and dispersal of species affected by the management of roadsides? A systematic map. Environ Evid 6:24

    Article  Google Scholar 

  • Blythman M, Sansom J (2019) Devitalising bird-seed to prevent dispersal of weeds by birds. Aust Field Ornithol 36:31–33

    Article  Google Scholar 

  • Brundu G, Richardson DM (2016) Planted forests and invasive alien trees in Europe: a code for managing existing and future plantings to mitigate the risk of negative impacts from invasions. NeoBiota 30:5–47

    Article  Google Scholar 

  • Buckley YM, Anderson S, Catterall CP et al (2006) Management of plant invasions mediated by frugivore interactions. J Appl Ecol 43:848–857

    Article  Google Scholar 

  • Byun C, de Blois S, Brisson J (2018) Management of invasive plants through ecological resistance. Biol Invasions 20:13–27

    Article  Google Scholar 

  • Carroll AB, Karakowsky L, Buchholtz AK (2016) Business and society: ethics and stakeholder management. South-Western, Cengage Learning, Mason

    Google Scholar 

  • Chen Y, Lu L, Duan H et al (2008) Biotech approach to neutralize the invasiveness of burning bush (Euonymus alatus), a progress report on development of its genetic transformation system and functional analysis of sterile genes. Acta Hort 769:21–29

    Article  Google Scholar 

  • De Lange WJ, Stafford WH, Forsyth GG et al (2012) Incorporating stakeholder preferences in the selection of technologies for using invasive alien plants as a bioenergy feedstock: applying the analytical hierarchy process. J Environ Manag 99:76–83

    Article  Google Scholar 

  • de Sá NC, Marchante H, Marchante E et al (2019) Can citizen science data guide the surveillance of invasive plants? A model-based test with acacia trees in Portugal. Biol Invasions 21:2127–2141

    Article  Google Scholar 

  • Dehnen-Schmutz K, Conroy J (2018) Working with gardeners to identify potential invasive ornamental garden plants – testing a citizen science approach. Biol Invasions 20:3069–3077

    Article  Google Scholar 

  • Dehnen-Schmutz K, Boivin T, Essl F et al (2018) Alien futures: what is on the horizon for biological invasions? Divers Distrib 24:1149–1157

    Article  Google Scholar 

  • Deiner K, Bik HM, MÀchler E et al (2017) Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol Ecol 26:5872–5895

    Article  PubMed  Google Scholar 

  • Demertzis K, Iliadis L (2017) Adaptive elitist differential evolution extreme learning machines on big data: intelligent recognition of invasive species. In: INNS conference on big data 2016 October 23. Springer, Cham, pp 333–345

    Google Scholar 

  • ECSA (2020) ECSA’s characteristics of citizen science. European Citizen Science Association, online document. https://ecsa.citizen-science.net/wp-content/uploads/2020/05/ecsa_characteristics_of_citizen_science_-_v1_final.pdf. Accessed 19 Sept 2020

  • Egolf DR (1988) “Aphrodite” rose of Sharon (Althea). HortScience 21:1463–1464

    Article  Google Scholar 

  • Environment Canada (2004) An invasive alien species strategy for Canada. Government of Canada, Ottawa

    Google Scholar 

  • EPPO (2014) Invasive alien aquatic plants. EPPO Bull 44:457–471

    Article  Google Scholar 

  • Foxcroft LC, McGeoch M (2011) Implementing invasive species management in an adaptive management framework. Koedoe 53:105–115

    Article  Google Scholar 

  • Gaertner M, Novoa A, Fried J et al (2017) Managing invasive species in cities: a decision support framework applied to Cape Town. Biol Invasions 19:3707–3723

    Article  Google Scholar 

  • García-Llorente M, Martín-López B, González JA et al (2008) Social perceptions of the impacts and benefits of invasive alien species: implications for management. Biol Conserv 141:2969–2983

    Article  Google Scholar 

  • Gurr MG, You M (2016) Conservation biological control of pests in the molecular era: new opportunities to address old constraints. Front Plant Sci 6:1255

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanson CG, Mason JL (1985) Bird seed aliens in Britain. Watsonia 15:237–252

    Google Scholar 

  • He KS, Rocchini D, Neteler M et al (2011) Benefits of hyperspectral remote sensing for tracking plant invasions. Divers Distrib 17:381–392

    Article  Google Scholar 

  • Head L, Larson B, Hobbs R et al (2015) Living with invasive plants in the Anthropocene: the importance of understanding practice and experience. Conserv Soc 13:311–318

    Article  Google Scholar 

  • Hobbs RJ, Arico S, Aronson J et al (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7

    Article  Google Scholar 

  • Hoffberg SL, Mauricio R, Hall RJ (2018) Control or re-treat? Model-based guidelines for managing established plant invasions. Biol Invasions 20:1387–1402

    Article  Google Scholar 

  • Hulme PE, Brundu G, Carboni M et al (2018) Integrating invasive species policies across ornamental horticulture supply chains to prevent plant invasions. J Appl Ecol 55:92–98

    Article  Google Scholar 

  • Hussner A, Stiers I, Verhofstad MJ et al (2017) Management and control methods of invasive alien freshwater aquatic plants: a review. Aquat Bot 136:112–137

    Article  Google Scholar 

  • Iannone BV III, Galatowitsch SM (2008) Altering light and soil N to limit Phalaris arundinacea reinvasion in Sedge Meadow Restorations. Restor Ecol 16:689–701

    Article  Google Scholar 

  • Jaric I, Bellard C, Correia RA et al (2021) Invasion culturomics and iEcology approaches to better understand biological invasions. Conserv Biol 35:447–451

    PubMed  Google Scholar 

  • Kairo MT, Cock MJ, Quinlan MM (2003) An assessment of the use of the code of conduct for the import and release of exotic biological control agents (ISPM No. 3) since its endorsement as an international standard. Biocontrol News Inf 24:15–27

    Google Scholar 

  • Kowarik I (2011) Novel urban ecosystems, biodiversity, and conservation. Environ Pollut 159:1974–1983

    Article  CAS  PubMed  Google Scholar 

  • Kumschick S, Bacher S, Bertolino S et al (2020) Appropriate uses of EICAT protocol, data and classifications. NeoBiota 62:193–212

    Article  Google Scholar 

  • Kwok R (2018) Ecology’s remote-sensing revolution. Nature 556:137–138

    Article  CAS  PubMed  Google Scholar 

  • Lambin X, Burslem D, Caplat P et al (2020) CONTAIN: optimising the long-term management of invasive alien species using adaptive management. NeoBiota 59:119–138

    Article  Google Scholar 

  • Larson ER, Graham BM, Achury R et al (2020) From eDNA to citizen science: emerging tools for the early detection of invasive species. Front Ecol Environ 18:94–202

    Article  Google Scholar 

  • Lian W, Yang L, Joseph S et al (2020) Utilization of biochar produced from invasive plant species to efficiently adsorb Cd (II) and Pb (II). Bioresour Technol 317:124011

    Article  CAS  PubMed  Google Scholar 

  • Lommen STE, Jongejans E, Leitsch-Vitalos M et al (2018) Time to cut: population models reveal how to mow invasive common ragweed cost-effectively. NeoBiota 39:53–78

    Article  Google Scholar 

  • Lorah P, Ready A, Rinn E (2018) Using drones to generate new data for conservation insights. IJGER 5:2

    Google Scholar 

  • Matthews J, Beringen R, Creemers R et al (2017) A new approach to horizon-scanning: identifying potentially invasive alien species and their introduction pathways. Manag Biol Invasions 8:37–52

    Article  Google Scholar 

  • Mauvisseau Q, Coignet A, Delaunay C et al (2018) Environmental DNA as an efficient tool for detecting invasive crayfishes in freshwater ponds. Hydrobiologia 805:163–175

    Article  CAS  Google Scholar 

  • McAusland C, Costello C (2004) Avoiding invasives: trade related policies for controlling unintentional exotic species introductions. J Environ Econ Manag 48:954–977

    Article  Google Scholar 

  • Murray NJ, Keith DA, Simpson D et al (2018) REMAP: an online remote sensing application for land cover classification and monitoring. Methods Ecol Evol 9:2019–2027

    Article  Google Scholar 

  • Neeley S (2018) Analyzing earth data with NASA’s AppEEARS tool to improve research efficiency. In: Abstracts of the 2018 fall meeting, AGU, Washington, DC, 10–14 December 2018

    Google Scholar 

  • Novoa A, Kaplan H, Wilson JRU et al (2016) Resolving a prickly situation: involving stakeholders in invasive cactus management in South Africa. Environ Manag 57:998–1008

    Google Scholar 

  • Novoa A, Flepu V, Boatwright JS (2018) Is spinelessness a stable character in cactus pear cultivars? Implications for invasiveness. J Arid Environ 160:11–16

    Article  Google Scholar 

  • Novoa A, Brundu G, Day MD et al (2019) Global actions for managing cactus invasions. Plan Theory 8:421

    Google Scholar 

  • Packer JG, Meyerson LA, Richardson DM et al (2017) Global networks for invasion science: benefits, challenges and guidelines. Biol Invasions 19:1081–1096

    Article  Google Scholar 

  • Pasko S, Goldberg J, MacNeil C et al (2014) Review of harvest incentives to control invasive species. Manag Biol Invasions 5:263–277

    Article  Google Scholar 

  • Pescott OL, Walker KJ, Pocock MJO et al (2015) Ecological monitoring with citizen science: the design and implementation of schemes for recording plants in Britain and Ireland. Biol J Linn Soc 115:505–521

    Article  Google Scholar 

  • Ricciardi A, Blackburn TM, Carlton JT et al (2017) Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol Evol 32:464–474

    Article  PubMed  Google Scholar 

  • Rout TM, Hauser CE, McCarthy MA et al (2017) Adaptive management improves decisions about where to search for invasive species. Biol Conserv 212:249–255

    Article  Google Scholar 

  • Roy HE, Peyton J, Aldridge DC et al (2014) Horizon scanning for invasive alien species with the potential to threaten biodiversity in Great Britain. Glob Chang Biol 20:3859–3871

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruppert KM, Kline RJ, Rahman MS (2019) Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol Conserv 17:e00547

    Article  Google Scholar 

  • Schaffner U, Hill M, Dudley T et al (2020) Post-release monitoring in classical biological control of weeds: assessing impact and testing pre-release hypotheses. Curr Opin Insect Sci 8:99–106

    Article  Google Scholar 

  • Scriver M, Marinich A, Wilson C et al (2015) Development of species-specific environmental DNA (eDNA) markers for invasive aquatic plants. Aquat Bot 122:27–31

    Article  CAS  Google Scholar 

  • Shackleton RT, Adriens T, Brundu G et al (2019) Stakeholder engagement in the study and management of invasive alien species. J Environ Manag 229:88–101

    Article  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Shrestha BB, Shrestha UB, Sharma KP (2019) Community perception and prioritization of invasive alien plants in Chitwan-Annapurna landscape, Nepal. J Environ Manag 229:38–47

    Article  Google Scholar 

  • Simmons M, Tucker A, Chadderton WL et al (2015) Active and passive environmental DNA surveillance of aquatic invasive species. Can J Fish Aquat Sci 73:76–83

    Article  CAS  Google Scholar 

  • Suckling DM, Sforza RFH (2014) What magnitude are observed non-target impacts from weed biocontrol? PLoS One 9:e84847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland WJ, Barnard P, Broad S et al (2017) A 2017 horizon scan of emerging issues for global conservation and biological diversity. Trends Ecol Evol 32:31–40

    Article  PubMed  Google Scholar 

  • Tshitoyan V, Dagdelen J, Weston L et al (2019) Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571:95–98

    Article  CAS  PubMed  Google Scholar 

  • Van Driesche RG, Carruthers RI, Center T et al (2010) Classical biological control for the protection of natural ecosystems. Biol Control 54:2–33

    Article  Google Scholar 

  • van Kleunen M, Essl F, Pergl J et al (2018) The changing role of ornamental horticulture in alien plant invasions. Biol Rev 93:1421–1437

    Article  PubMed  Google Scholar 

  • van Rij V (2010) Joint horizon scanning: identifying common strategic choices and questions for knowledge. Sci Public Policy 37:7–18

    Article  Google Scholar 

  • Vaz AS, Segura DA, Vicente JR et al (2019) The many roles of remote sensing in invasion science. Front Ecol Evol 7:370

    Article  Google Scholar 

  • Webber BL, Raghu S, Edwards OR (2015) Opinion: is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat? Proc Natl Acad Sci U S A 112:10565–10567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams KE, Huyvaert KP, Vercauteren KC et al (2018) Detection and persistence of environmental DNA from an invasive, terrestrial mammal. Ecol Evol 8:688–695

    Article  PubMed  Google Scholar 

  • Yannelli FA, Karrer G, Hall R et al (2018) Seed density is more effective than multi-trait limiting similarity in controlling grassland resistance against plant invasions in mesocosms. Appl Veg Sci 21:411–418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Dehnen-Schmutz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dehnen-Schmutz, K., Novoa, A. (2022). Advances in the Management of Invasive Plants. In: Clements, D.R., Upadhyaya, M.K., Joshi, S., Shrestha, A. (eds) Global Plant Invasions. Springer, Cham. https://doi.org/10.1007/978-3-030-89684-3_15

Download citation

Publish with us

Policies and ethics