Skip to main content

Patagonia’s Chubut River: Overview of the Main Hydrological and Geochemical Features

  • Chapter
  • First Online:
Environmental Assessment of Patagonia's Water Resources

Part of the book series: Environmental Earth Sciences ((EESCI))

  • 180 Accesses

Abstract

The Chubut River’s mean annual discharge is ~1.1 km3 (~35 m3 s−1), contributes ~2% to Patagonia’s total freshwater discharge, and ranks far behind the mighty Negro River (~32 km3 y−1). In a semiarid scenario, the river has a mountainous active basin, low runoff (<3.5 mm y−1), and a scanty specific water yield (1.1 L s−1 km−2). The seasonal Kendall trend test shows that discharges during the low-water months (Jan.–Mar., May) have been significantly decreasing during the last decades. Ca2+–HCO3 are the governing ions in the headwaters but the composition gradually shifts to a Na+-type toward the lowermost reaches. Numerous Andean glaciers suggest that subglacial oxidation of pyrite may be an active solute-supplying mechanism. Silicate hydrolysis and limestone dissolution—implied by non-radiogenic 87Sr/86Sr ratios—are the processes ruling chemical weathering. The Chubut is a mesotrophic river, with a moderate organic load (mean TOC ~290 µmol L−1, and mean yield ~10.5 mmol m−2 y−1; ~60% accounted for by DOC). Suspended sediment yield at Los Altares (~14 T km2 y−1) and in the lowermost reach (~25 T km2 y−1) indicate a relatively low denudation. The alteration index of riverbed sediments (mean CIA ≈ 55) suggests scarce weathering; REE spider diagrams of sediments shows a signature compatible with continental island arcs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Chubut comes from the aboriginal (i.e. tehuelche) word chupat, which means “transparent”. Welsh settlers called the river “Afon camwy”, meaning “twisting river”.

  2. 2.

    According to Argentina's glacier inventory (https://www.argentina.gob.ar/ambiente/agua/glaciares/inventario-nacional), there are over 1500 ice and rock glaciers and snow buildups in Chubut's Andean region, covering a surface area of ~225 Km2.

  3. 3.

    Also reported as particulate organic matter or POM.

  4. 4.

    The global DOC average concentration fluctuates between ~400 and 480 µmol L−1 (Perdue and Ritchie 2005).

  5. 5.

    DIC = (CO2*) + (HCO3) + (CO32−), where (CO2*) = (CO2) + (H2CO3).

  6. 6.

    Mean POC/PN ≈ 10, thus suggesting a dominant origin in the terrestrial environment.

  7. 7.

    The Los Altares gaging station is 230 km upstream from the city of Trelew and over 250 km from the estuary.

References

  • Bouza PJ, Saín C, Videla L, Dell’Archiprete P, Cortés E, Rua J (2017) Soil-geomorphology relationships in the Pichiñán uraniferous district, central region of Chubut Province, Argentina. In: Rabassa J (ed), Advances in geomorphology and quaternary studies in Argentina. Springer Earth System Sciences, Switzerland, pp 77–99

    Google Scholar 

  • Calmels D, Gaillardet J, Brenot A, France-Lanord C (2007) Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: climatic perspectives. Geology 35(11):1003–1006

    Article  CAS  Google Scholar 

  • Carson MA, Kirkby NJ (1972) Hillslope form and processes. Cambridge University Press

    Google Scholar 

  • Chillrud SN, Pedrozo FL, Temporetti PF, Planas HF, Froelich PN (1994) Chemical weathering of phosphate and germanium in glacial meltwater streams: Effects of subglacial pyrite oxidation. Limnol Oceanogr 39(5):1130–1140

    Article  CAS  Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology. J Wiley & Sons, New York

    Google Scholar 

  • Depetris PJ, Gaiero DM, Probst J-L, Hartmann J, Kempe S (2005) Biogeochemical output and typology of rivers draining Patagonia’s Atlantic seaboard. J Coast Res 21:835–844

    Article  Google Scholar 

  • Depetris PJ, Pasquini AI (2008) Riverine flow and lake level variability in southern South America. Eos 89(28):254–255

    Article  Google Scholar 

  • Depetris PJ, Pasquini AI, Lecomte KL (2014) Weathering and the riverine denudation of continents. Springer, Dordrecht

    Book  Google Scholar 

  • Drever JI (1997) The geochemistry of natural waters. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Gaiero DM, Depetris PJ, Probst J-L, Bidart SM, Leleyter L (2004) The signature of river-and wind-borne materials exported from Patagonia to the southern latitudes: a view from REEs and implications for paleoclimatic interpretations. Earth Planet Sci Lett 219:357–376

    Article  CAS  Google Scholar 

  • Gaiero DM, Probst J-L, Depetris PJ, Bidart SM, Leleyter L (2003) Iron and other transition metals in Patagonia river borne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochim Cosmochim Acta 67:3606–3623

    Article  Google Scholar 

  • Gaiero DM, Probst J-L, Depetris PJ, Leleyter L, Kempe S (2002) Riverine transfer of heavy metals from Patagonia to the southwestern Atlantic Ocean. Reg Environ Chang 3(1–3):51–64

    Article  Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    Article  CAS  Google Scholar 

  • Garrels RM, Mackenzie FT (1967) Origin of the chemical compositions of some springs and lakes. In: Gould RF (ed) Equilibrium concepts in natural water systems. American Chemical Society, Washington DC, pp 222–242

    Chapter  Google Scholar 

  • Hernández MA, Ruiz de Galarreta VA, Fidalgo F (1983) Geohydrological diagnosis applied to the lower valley of Chubut River. Ciencia Del Suelo 1(2):83–91 (in Spanish)

    Google Scholar 

  • Hirsch RM, Slack JR (1984) A nonparametric trend test for seasonal data with serial dependence. Water Resour Res 20:727–732

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  • Killops S, Killops V (2005) Introduction to organic geochemistry. Blackwell, Malden

    Google Scholar 

  • Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Ludwig W, Probst J-L (1998) River sediments discharge to the ocean: present-day controls and global budgets. Am J Sci 298:265–295

    Article  CAS  Google Scholar 

  • Marsal D, Merriam DF (2014) Statistics for geoscientists. Elsevier, Amsterdam

    Google Scholar 

  • McLennan SN (1989) Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Rev Mineral Geochem 21:169–200

    CAS  Google Scholar 

  • McLennan SN (1993) Weathering and global denudation. J Geol 101:295–303

    Article  Google Scholar 

  • Meybeck M (2005) Global occurrence of major elements in rivers. In: Drever JI (ed), Surface and groundwater, weathering and soils. Elsevier, Amsterdam

    Google Scholar 

  • Milliman JD, Farnsworth KL (2011) River discharge to the coastal ocean. A global synthesis, Cambridge

    Book  Google Scholar 

  • Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the ocean. J Geol 91:1–21

    Article  Google Scholar 

  • Moyano CH, Moyano MC (2013) Hydrological study of the Chubut River. Upper and middle basin. Contrib Cient Gæa 251:149–164 (in Spanish)

    Google Scholar 

  • Pasquini AI (2000) Geoquímica de sedimentos fluviales en una cuenca árida de alta latitud: el río Chubut, Patagonia, Argentina. Doctoral dissertation. Universidad Nacional de Córdoba, Argentina (in Spanish)

    Google Scholar 

  • Pasquini AI, Depetris PJ (2007) Discharge trends and flow dynamics of South American rivers draining the southern Atlantic seaboard: An overview. J Hydrol 333:385–399

    Article  Google Scholar 

  • Pasquini AI, Depetris PJ, Gaiero DM, Probst J-L (2005) Material sources, chemical weathering and physical denudation in the Chubut River basin (Patagonia, Argentina): implications for Andean rivers. J Geol 113:451–469

    Article  CAS  Google Scholar 

  • Perdue EM, Ritchie JD (2005) Dissolved organic matter in freshwaters. In: Drever JI (ed) Surface and groundwater, weathering and soils. Elsevier, Amsterdam, pp 273–318

    Google Scholar 

  • Piper A (1944) A graphic procedure in the geochemical interpretation of water analyses. Am Geophys Union Trans 25:914–923

    Article  Google Scholar 

  • Potter PE (1994) Modern sands of South America: composition, provenance and global significance. Geol Rundsch 83:212–232

    Article  Google Scholar 

  • Rapela CW, Pankhurst RJ (2020) The continental crust of Northeastern Patagonia. Ameghiniana 57(5):480–498

    Article  Google Scholar 

  • Sastre AV, Santinelli NH, Otaño SH, Ivanissevich ME (1998) Water quality in the lower section of the Chubut river, Patagonia, Argentina. Verh Internat Verein Limnol 26:951–955

    CAS  Google Scholar 

  • Scapini M del C, Orfila JD (2001). Características químicas de las aguas superficiales del Chubut. http://www2.medioambiente.gov.ar/sian/chubut/trabajos/super.htm. Accessed on 29 Apr 2020 (in Spanish)

  • Subsecretaría de Recursos Hídricos (2002) Atlas Digital de los Recursos Hídricos Superficiales de la República Argentina, CD-Rom, Buenos Aires (in Spanish)

    Google Scholar 

  • Torres AI, Andrade CF, Moore WS, Faleschini M, Esteves JL, Niencheski LFH, Depetris PJ (2018) Ra and Rn isotopes as natural tracers of submarine groundwater discharge in the Patagonian coastal zone (Argentina): an initial assessment. Environ Earth Sci 77(4):145–154

    Article  Google Scholar 

  • Tranter M (2005) Geochemical weathering in glacial and proglacial environments. In: Drever JI (ed) Surface and groundwater, weathering and soils. Elsevier, Amsterdam, pp 189–205

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea I. Pasquini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Depetris, P.J., Pasquini, A.I. (2021). Patagonia’s Chubut River: Overview of the Main Hydrological and Geochemical Features. In: Torres, A.I., Campodonico, V.A. (eds) Environmental Assessment of Patagonia's Water Resources. Environmental Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-89676-8_6

Download citation

Publish with us

Policies and ethics