Skip to main content

FIMSIM: Discovering Communities by Frequent Item-Set Mining and Similarity Search

  • 339 Accesses

Part of the Lecture Notes in Computer Science book series (LNISA,volume 13058)

Abstract

With the growth of structured graph data, the analysis of networks is an important topic. Community mining is one of the main analytical tasks of network analysis. Communities are dense clusters of nodes, possibly containing additional information about a network. In this paper, we present a community-detection approach, called FIMSIM, which is based on principles of frequent item-set mining and similarity search. The frequent item-set mining is used to extract cores of the communities, and a proposed similarity function is applied to discover suitable surroundings of the cores. The proposed approach outperforms the state-of-the-art DB-Link Clustering algorithm while enabling the easier selection of parameters. In addition, possible modifications are proposed to control the resulting communities better.

Keywords

  • Community mining
  • Frequent item-set mining
  • Similarity search
  • Network analysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-89657-7_28
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-89657-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Adamcsek, B., Palla, G., Farkas, I.J., Derényi, I., Vicsek, T.: CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22(8), 1021–1023 (2006)

    Google Scholar 

  2. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)

    Google Scholar 

  3. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466(7307), 761–764 (2010)

    Google Scholar 

  4. Batko, M., Novak, D., Zezula, P.: MESSIF: metric similarity search implementation framework. In: Thanos, C., Borri, F., Candela, L. (eds.) Digital Libraries: Research and Development. DELOS 2007. LNCS, vol. 4877, pp. 1–10. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77088-6_1

  5. Bhat, S.Y., Abulais, M.: OCMiner: a density-based overlapping community detection method for social networks. Intell. Data Anal. 19(4), 917–947 (2015)

    Google Scholar 

  6. Chen, D., Shang, M., Lv, Z., Fu, Y.: Detecting overlapping communities of weighted networks via a local algorithm. Physica A: Stat. Mech. Appl. 389(19), 4177–4187 (2010)

    Google Scholar 

  7. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Google Scholar 

  8. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Google Scholar 

  9. Kumpula, J.M., Kivelä, M., Kaski, K., Saramäki, J.: Sequential algorithm for fast clique percolation. Phys. Rev. E 78(2), 026109 (2008)

    Google Scholar 

  10. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11(3), 033015 (2009)

    Google Scholar 

  11. Newman, M.E.: Communities, modules and large-scale structure in networks. Nat. Phys. 8(1), 25–31 (2012)

    Google Scholar 

  12. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Google Scholar 

  13. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

    Google Scholar 

  14. Peschel, J., Batko, M., Zezula, P.: Techniques for complex analysis of contemporary data. In: Proceedings of the 2020 International Conference on Pattern Recognition and Intelligent Systems, pp. 1–5 (2020)

    Google Scholar 

  15. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. 101(9), 2658–2663 (2004)

    Google Scholar 

  16. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)

    Google Scholar 

  17. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach, vol. 32. Springer, Heidelberg (2006)

    Google Scholar 

  18. Zhou, X., Liu, Y., Wang, J., Li, C.: A density based link clustering algorithm for overlapping community detection in networks. Physica A: Stat. Mech. Appl. 486, 65–78 (2017)

    Google Scholar 

Download references

Acknowledgment

This research has been supported by the Czech Science Foundation project No. GA19-02033S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Peschel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Peschel, J., Batko, M., Valcik, J., Sedmidubsky, J., Zezula, P. (2021). FIMSIM: Discovering Communities by Frequent Item-Set Mining and Similarity Search. In: , et al. Similarity Search and Applications. SISAP 2021. Lecture Notes in Computer Science(), vol 13058. Springer, Cham. https://doi.org/10.1007/978-3-030-89657-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89657-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89656-0

  • Online ISBN: 978-3-030-89657-7

  • eBook Packages: Computer ScienceComputer Science (R0)