Skip to main content

Evalu@ + Sports. Creatine Phosphokinase and Urea in High-Performance Athletes During Competition. a Framework for Predicting Injuries Caused by Fatigue

  • 200 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 1455)

Abstract

Elite athletes follow a strict regime of physical training that forces muscle deterioration - reconstruction cycles and specific energy generation patterns. One can monitor metabolic functions in blood for further training planning and optimization. The creatine phosphokinase (CPK) and the Urea appear in the serum-blood with higher average values in elite-athletes in comparison with sedentary subjects. In this manuscript, CPK and Urea recorded in professional soccer players are studied along a full season to create a framework where training sessions could be customized. Preliminary results set the foundation for building a platform capable of anticipating fatigue-induced injuries and a detailed recovery follow-up of lesions.

Keywords

  • Elite athletes fatigue
  • Fatigue analysis
  • Training planning
  • Evalu@ data centralizer
  • Prediction of injures by fatigue

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-89654-6_21
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-89654-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

References

  1. Aristotelis, G.: Biochemical changes from preparation to competitive period in soccer. International J. Sci. Cult. Sport 4(June), 150–161 (2016). https://doi.org/10.14486/IntJSCS495, www.iscsjournal.com

  2. Baird, M.F., Graham, S.M., Baker, J.S., Bickerstaff, G.F.: Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J. Nutr. Metab. 2012 (2012). https://doi.org/10.1155/2012/960363

  3. Brancaccio, P., Lippi, G., Maffulli, N.: Biochemical markers of muscular damage. Clin. Chem. Lab. Med. 48(6), 757–767 (2010). https://doi.org/10.1515/CCLM.2010.179

    CrossRef  Google Scholar 

  4. Clarkson, P.M., Nosaka, K., Braun, B.: Muscle function after exercise-induced muscle damage and rapid adaptation. Med. Sci. Sports Exerc. 24(5), 512–520 (1992). https://doi.org/10.1249/00005768-199205000-00004

    CrossRef  Google Scholar 

  5. Ekstrand, J., Hägglund, M., Waldén, M.: Epidemiology of muscle injuries in professional football (soccer). Am. J. Sports Med. 39(6), 1226–1232 (2011). https://doi.org/10.1177/0363546510395879

    CrossRef  Google Scholar 

  6. Hagel, C., Krasemann, S., Löffler, J., Püschel, K., Magnus, T., Glatzel, M.: Upregulation of shiga toxin receptor CD77/Gb3 and interleukin-1\(\beta \) expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms. Brain Pathol. 25(2), 146–156 (2015). https://doi.org/10.1111/bpa.12166

    CrossRef  Google Scholar 

  7. Handley, R.R., et al.: Brain urea increase is an early Huntington’s disease pathogenic event observed in a prodromal transgenic sheep model and HD cases. Proc. Natl. Acad. Sci. United States Am. 114(52), E11293–E11302 (2017). https://doi.org/10.1073/pnas.1711243115

    CrossRef  Google Scholar 

  8. Haralambie, G., Berg, A.: Serum urea and amino nitrogen changes with exercise duration. Eur. J. Appl. Physiol. Occup. Physiol. 36(1), 39–48 (1976). https://doi.org/10.1007/BF00421632

    CrossRef  Google Scholar 

  9. Hartmann, U., Mester, J.: Selected sport events. Medicine 32, 209–215 (2000). https://doi.org/10.1097/00005768-200001000-00031, http://www.msse.org

  10. Hartmann, U., Mester, J.: Training and overtraining markers in selected sport events. Med. Sci. Sports Exerc. 32(1), 209–215 (2000). https://doi.org/10.1097/00005768-200001000-00031

    CrossRef  Google Scholar 

  11. Junge, A., Dvořák, J.: Football injuries during the 2014 FIFA World Cup. Brit. J. Sports Med. 49(9), 599–602 (2015). https://doi.org/10.1136/bjsports-2014-094469

    CrossRef  Google Scholar 

  12. Majumdar, P.: Physiological analysis to quantify training load in badminton. Brit. J. Sports Med. 31(4), 342–345 (1997). https://doi.org/10.1136/bjsm.31.4.342

    CrossRef  Google Scholar 

  13. Mougios, V.: Reference intervals for serum creatine kinase in athletes. Brit. J. Sports Med. 41(10), 674–678 (2007). https://doi.org/10.1136/bjsm.2006.034041

    CrossRef  Google Scholar 

  14. Myers, V.C., Riger, M., Benson, O.O.: The formation of urea in autolysis. Proc. Soc. Exp. Biol. Med. 23(6), 474–476 (1926). https://doi.org/10.3181/00379727-23-3021

    CrossRef  Google Scholar 

  15. Shen, Y.Q., Tang, L., Zhou, H.M., Lin, Z.J.: Structure of human muscle creatine kinase. Acta Crystallographica Sect. D Biol. Crystallogr 57(8), 1196–1200 (2001). https://doi.org/10.1107/S0907444901007703

    CrossRef  Google Scholar 

  16. Silva, J.R., et al.: Acute and residual soccer match-related fatigue: a systematic review and meta-analysis. Sports Med. 48(3), 539–583 (2017). https://doi.org/10.1007/s40279-017-0798-8

    CrossRef  Google Scholar 

  17. Wallimann, T., et al.: Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology. BioFactors 8(3–4), 229–234 (1998). https://doi.org/10.1002/biof.5520080310

    CrossRef  Google Scholar 

  18. Yepes-Calderon, F., Yepes Zuluaga, J.F., Yepes Calderon, G.E.: Evalu@: an agnostic web-based tool for consistent and constant evaluation used as a data gatherer for artificial intelligence implementations. In: Florez, H., Leon, M., Diaz-Nafria, J.M., Belli, S. (eds.) ICAI 2019. CCIS, vol. 1051, pp. 73–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32475-9_6

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Yepes-Calderon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Yepes Zuluaga, J.F., Gregory Tatis, A.D., Forero Arévalo, D.S., Yepes-Calderon, F. (2021). Evalu@ + Sports. Creatine Phosphokinase and Urea in High-Performance Athletes During Competition. a Framework for Predicting Injuries Caused by Fatigue. In: Florez, H., Pollo-Cattaneo, M.F. (eds) Applied Informatics. ICAI 2021. Communications in Computer and Information Science, vol 1455. Springer, Cham. https://doi.org/10.1007/978-3-030-89654-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89654-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89653-9

  • Online ISBN: 978-3-030-89654-6

  • eBook Packages: Computer ScienceComputer Science (R0)