Skip to main content

Part of the book series: Synthese Library ((SYLI,volume 447))

Abstract

Quantum mechanics is a fundamental theory that represents physical processes at atomic and sub-atomic level. It is an extraordinarily successful theory, but its interpretation has been the subject of endless controversies. Quantum mechanics and its further developments such as quantum field theory have been invoked to justify beliefs in idealism, the independent existence of the mind, infinite worlds, and almost anything imaginable. In this chapter I review the basic assumptions of both quantum mechanics and quantum field theory and present an analysis of their ontological implications. I evaluate the concept of matter in the light of both theories and conclude that, far from being idealistic theories, they agree with a fully materialistic view of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Bohr (1987), p. 54.

  2. 2.

    Heisenberg (1962), p. 145.

  3. 3.

    Wigner (1995), p. 248.

  4. 4.

    Feynman (1965), p. 129.

  5. 5.

    The problem of measurement might be enunciated more precisely saying that quantum systems evolve in a superposition of states before a measurement. The measurement, however, always reveals a definite particular state. See the end of Sect. 4.3.

  6. 6.

    A Hilbert space is an abstract vector space possessing the structure of an inner product that allows lengths and angles to be measured. Hilbert spaces are complete in the sense that there are enough limits in the space to allow the techniques of calculus to be used.

  7. 7.

    In this definition the symbol ∗ designates the conjugate-complex of the wave function.

  8. 8.

    Heisenberg (1958), p. 28.

  9. 9.

    von Neumann (1955) (original 1932).

  10. 10.

    London and Bauer (1939), p. 252.

  11. 11.

    This is not the only realist and objective interpretation that can be proposed for quantum mechanics. The Many-Worlds interpretation, for instance, adopts the collapse postulate and interprets it at face value accepting an ontological inflation. The overabundant ontology that results is perfectly compatible with materialistic views. This article is not the place to discuss the different arguments for and against these and other interpretations. Rather, the point to be emphasized here is the fact that quantum mechanics can be consistently understood in a way such that the theory does not imply a challenge for materialism. For discussions about interpretations of quantum mechanics see Ruetche (2011) and Acuña (2019).

  12. 12.

    For interacting particles the tensor product should be considered.

  13. 13.

    For simplicity I consider here a scalar field.

  14. 14.

    All theories discussed here are renormalizable.

References

  • Acuña, P. 2019. Charting the landscape of interpretation, theory rivalry, and underdetermination in quantum mechanics. Synthese. https://doi.org/10.1007/s11229-019-02159-z

  • Aspect, A., Grangier, P., and G. Roger. 1981. Experimental tests of realistic local theories via Bell’s Theorem. Physical Review Letters 47: 460–463.

    Article  Google Scholar 

  • Aspect, A., Dalibard, J., and G. Roger 1982. Experimental test of Bell’s Inequalities using timevarying analyzers. Physical Review Letters 49: 1804–1807.

    Article  Google Scholar 

  • Bell, J.S. 1964. On the Einstein Podolsky Rosen paradox. Physics 1(3): 195–200.

    Article  Google Scholar 

  • Bell, J.S. 1966. On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics 38: 447–452.

    Article  Google Scholar 

  • Bell, J.S. 2004. Speakable and Unspeakable in Quantum Mechanics, 2nd ed. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Birrell n.d., and P.C.W. Davies. 1982. Quantum Fields in Curved Space. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bohr, N. 1987. The Philosophical Writings of Niels Bohr, Vol. I. Woodbridge, Connecticut: Ox Bow.

    Google Scholar 

  • Bunge, M. 1956. A survey of the interpretations of quantum mechanics. American Journal of Physics 24: 272–286.

    Article  Google Scholar 

  • Bunge, M. 1967. Foundations of Physics. New York: Springer-Verlag.

    Book  Google Scholar 

  • Bunge, M. 1973. Philosophy of Physics. Dordrecht: Reidel.

    Book  Google Scholar 

  • Bunge, M. 1974. Treatise on Basic Philosophy, Vol.1: Sense and Reference. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Bunge, M. 1977. Interpretation of Heisenberg’s Inequalities. In Denken und Umdenken, ed. H. Pfeiffer. Munchen: R. Piper & Co., Verlag, pp. 146–156.

    Google Scholar 

  • Davies, P.C.W. 1975. Scalar particle production in Schwarzschild and Rindler metrics. Journal of Physics A 8: 609–616.

    Article  Google Scholar 

  • Davies, P.C.W. 1984. Particles do not exist, in: Quantum Theory of Gravity, ed. S.M. Christensen. Bristol: Adam Hilger, Bristol, pp. 66–77.

    Google Scholar 

  • Dirac, P.A.W. 1930, The Principles of Quantum Mechanics. Oxford: Oxford University Press.

    Google Scholar 

  • Earman, J. 1986. A Primer on Determinism. Dordrecht, Holland: D. Reidel.

    Book  Google Scholar 

  • Eckart, C. (1926). Operator calculus and the solution of the equation of quantum dynamics. Physics Reviews 28: 711–726.

    Article  Google Scholar 

  • Einstein, A., B. Podolsky, and N. Rosen. 1935. Can quantum-mechanical description of physical reality be considered complete? Physical Review 47(10): 777–780.

    Article  Google Scholar 

  • Feynman, R. 1965. The Character of Physical Law. New York: Modern Library.

    Google Scholar 

  • Freedman, S.J., and J.F. Clauser. 1972. Experimental test of local hidden-variable theories. Physical Review Letters 28(938): 938–941.

    Article  Google Scholar 

  • Heisenberg, W. 1958. Physics and Philosophy: The Revolution in Modern Science. London: George Allen & Unwin.

    Google Scholar 

  • Heisenberg, W. 1962. Physics and Philosophy. New York: Harper and Row.

    Google Scholar 

  • Hobson, A. 2013. There are no particles, there are only fields. American Journal of Physics 81: 211–223.

    Article  Google Scholar 

  • Jammer, M. 1974. The Philosophy of Quantum Mechanics: the Interpretations of Quantum Mechanics in Historical Perspective. New York: Wiley.

    Google Scholar 

  • Lewis, P.J. 2016. Quantum Ontology: A Guide to the Metaphysics of Quantum Mechanics. Oxford: Oxford University Press.

    Book  Google Scholar 

  • London, F., and E. Bauer. 1939, La théorie de l’observation en mécanique quantique. Paris: Hermann, 1939. Translated in: J.A. Wheeler and W.H. Zurek. 1984. Quantum theory and measurement. Princeton: Princeton University Press.

    Google Scholar 

  • López Armengol, F., and G.E. Romero. 2017. Interpretation misunderstandings about elementary quantum mechanics. Metatheoria 7(2): 55–60.

    Article  Google Scholar 

  • Margenau, H. 1954. Adventages and disadvantages of various interpretations of the quantum theory. Physics Today 7: 6–13.

    Article  Google Scholar 

  • Messiah, A. 2014. Quantum Mechanics. Mineola: Dover.

    Google Scholar 

  • Norsen, T. 2017. Foundations of Quantum Mechanics. Cham: Springer.

    Book  Google Scholar 

  • Oriti, D. (ed.) 2009. Approaches to Quantum Gravity. Toward a New Understanding of Space, Time and Matter. Cambridge: Cambridge University Press.

    Google Scholar 

  • Perez Bergliaffa, S.E., G.E. Romero, and H. Vucetich. 1993. Axiomatic foundations of non-relativistic quantum mechanics: A realistic approach, International Journal of Theoretical Physics 32: 1507–1522.

    Article  Google Scholar 

  • Perez Bergliaffa, S.E., G.E. Romero, H. Vucetich. 1996. Axiomatic foundations of quantum mechanics revisited: The case for systems. International Journal of Theoretical Physics 35: 1805–1819.

    Article  Google Scholar 

  • Ruetche, L. 2011. Interpreting Quantum Theories. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Romero, G.E. 2013. Adversus singularitates: The ontology of space-time singularities. Foundations of Science 18: 297–306.

    Article  Google Scholar 

  • Romero, G.E. 2017. On the ontology of spacetime: Substantivalism, relationism, eternalism, and emergence. Foundations of Science 22: 141–159.

    Article  Google Scholar 

  • Romero, G.E. 2018. Scientific Philosophy. Cham: Springer.

    Book  Google Scholar 

  • Schlosshauer, M. 2007. Decoherence and the Quantum-to-Classical Transition. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Schrödinger, E. 1926. Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinen. Annals of Physics 79: 734–756.

    Article  Google Scholar 

  • Unruh, W.H. 1976. Notes on black hole evaporation. Physical Review D 14: 870–892.

    Article  Google Scholar 

  • von Neumann, J. 1955 (original 1932). Mathematical Foundations of Quantum Mechanics. Princeton: Princeton University Press.

    Google Scholar 

  • Wigner, E.P. 1995. Philosophical Reflections and Syntheses. Berlin and Heidelberg: Springer

    Google Scholar 

Download references

Acknowledgements

I am grateful to an anonymous reviewer for useful remarks. This work was supported by the Argentine agencies CONICET (PIP 2014-00338) and ANPCyT (PICT-2017-2865), as well as by the Spanish Ministerio de Economía y Competitividad (MINECO/FEDER, UE) under grant AYA2016-76012-C3-1-P and PID2019-105510GB-C31.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romero, G.E. (2022). Quantum Matter. In: Romero, G.E., Pérez-Jara, J., Camprubí, L. (eds) Contemporary Materialism: Its Ontology and Epistemology. Synthese Library, vol 447. Springer, Cham. https://doi.org/10.1007/978-3-030-89488-7_4

Download citation

Publish with us

Policies and ethics