Skip to main content

Origins of Life

  • Chapter
  • First Online:
Semiotic Agency

Part of the book series: Biosemiotics ((BSEM,volume 25))

Abstract

The origin of life involves a transition from a merely physical world into the world of semiotic agency . Attempts to explain the origin of life by synthesis of such organic molecules as peptides or nucleic acids is baseless, because amino acids and nucleotides are products of the evolving life rather than parts from which the first living system was assembled. We follow the footsteps of Oparin and Dyson in reconstructing primordial self-propagating functional molecular networks. Such networks were initially non-genetic and presumably similar to “lipid world” vesicles. Components of these networks were simple catalysts resembling contemporary coenzymes which might have colonized the surface of small oil droplets in water, where oil (mostly alkanes) was both a substrate and nutrient. Coenzyme-like molecules (CLMs) changed the surface properties of oil droplets, and in this way created favorable conditions for their own self-reproduction. Heredity was supported by a transfer of CLMs to daughter oil droplets following an accidental split of parental droplets. Niche-dependent self-reproduction and natural selection were necessary conditions for the emergence of cooperation between different kinds of CLMs that inhabited the same oil droplet. Eventually, some CLMs formed polymers and their adaptive evolution resulted in the emergence of template-based synthesis similar to that of nucleic acids. Oil droplets eventually transformed into the outer membrane of cells via engulfing water, stabilization of the surface, and osmoregulation. As a result, the metabolism was internalized, allowing cells to accumulate free-floating resources, which was a necessary condition for the emergence of protein synthesis. This scenario covers a long evolutionary path from simple but already functional and evolvable molecules to cellular organisms comparable to the Last Universal Common Ancestor (LUCA ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Initially it was called ‘autocell’ ( Deacon, 2006).

  2. 2.

    P-GARD model does not differentiate between the surface and inner space in the vesicle. The kinetics of chemical reactions depends on dimensionality, and thus it is different on the surface and inside a vesicle. Thus, the coenzyme-world model requires a different mathematical formalism than P-GARD, but it has not been developed yet.

  3. 3.

    Cited from https://ucmp.berkeley.edu/education/events/deamer1.html

References

  • Abbot, D. S., & Switzer, E. R. (2011). The Steppenwolf: A proposal for a habitable planet in interstellar space. Astrophysical Journal Letters, 735(2), L27.

    Article  Google Scholar 

  • Adam, G., & Delbrück, M. (1968). Reduction of dimensionality in biological diffusion processes. In A. Rich & N. Davidson (Eds.), Structural chemistry and molecular biology (pp. 198–215). W.H. Freeman.

    Google Scholar 

  • Adami, C., Ofria, C., & Collier, T. C. (2000). Evolution of biological complexity. Proceedings of the National Academy of Sciences of the U.S.A., 97(9), 4463–4468.

    Article  Google Scholar 

  • Badescu, V. (2011). Constraints on the free-floating planets supporting aqueous life. Acta Astronautica, 69(9–10), 788–808.

    Article  Google Scholar 

  • Benner, S. A. (2010). Defining life. Astrobiology, 10(10), 1021–1030.

    Article  Google Scholar 

  • Benner, S. A., Kim, H. J., & Carrigan, M. A. (2012). Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Accounts of Chemical Research, 45(12), 2025–2034.

    Article  Google Scholar 

  • Bernal, J. D. (1951). The physical basis of life. Routledge and Kegan Paul.

    Google Scholar 

  • Bernhardt, H. S. (2012). The RNA world hypothesis: The worst theory of the early evolution of life (except for all the others). Biology Direct, 7, 23.

    Article  Google Scholar 

  • Betts, H. C., Puttick, M. N., Clark, J. W., Williams, T. A., Donoghue, P. C. J., & Pisani, D. (2018). Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nature Ecology and Evolution, 2(10), 1556–1562.

    Article  Google Scholar 

  • Buonaccorsi, J. P. (2010). Measurement error: Models, methods, and applications. CRC Prress, Taylor & Francis Group.

    Book  Google Scholar 

  • Caetano-Anolles, G., & Seufferheld, M. J. (2013). The coevolutionary roots of biochemistry and cellular organization challenge the RNA world paradigm. Journal of Molecular Microbiology and Biotechnology, 23(1–2), 152–177.

    Google Scholar 

  • Cairns-Smith, A. G. (1982). Genetic takeover and the mineral origins of life. Cambridge University Press.

    Google Scholar 

  • Callahan, M. P., Smith, K. E., Cleaves, H. J., 2nd, Ruzicka, J., Stern, J. C., Glavin, D. P., et al. (2011). Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proceedings of the National Academy of Sciences of the U.S.A., 108(34), 13995–13998.

    Article  Google Scholar 

  • Cavalier-Smith, T. (2005). Economy, speed and size matter: Evolutionary forces driving nuclear genome miniaturization and expansion. Annals of Botany, 95(1), 147–175.

    Article  Google Scholar 

  • Cooper, G., Kimmich, N., Belisle, W., Sarinana, J., Brabham, K., & Garrel, L. (2001). Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature, 414(6866), 879–883.

    Article  Google Scholar 

  • Copley, S. D., Smith, E., & Morowitz, H. J. (2007). The origin of the RNA world: Co-evolution of genes and metabolism. Bioorganic Chemistry, 35(6), 430–443.

    Article  Google Scholar 

  • Damer, B. (2016). A field trip to the Archaean in search of Darwin’s warm little pond. Life 6, #21. Life (Basel), 6(2), 21.

    Google Scholar 

  • Deacon, T., & Koutroufinis, S. (2014). Complexity and dynamical depth. Informatioln, 5, 404–423.

    Article  Google Scholar 

  • Deacon, T. W. (2006). Reciprocal linkage between self-organizing processes is sufficient for self-reproduction and evolvability. Biological Theory, 1(2), 136–149.

    Article  Google Scholar 

  • Deacon, T. W. (2011). Incomplete nature: How mind emerged from matter. W. W. Norton and Company.

    Google Scholar 

  • Deacon, T. W., Srivastava, A., & Bacigalupi, J. A. (2014). The transition from constraint to regulation at the origin of life. Frontiers in Bioscience (Landmark Ed), 19, 945–957.

    Article  Google Scholar 

  • Deamer, D. (2011). First life: Discovering the connections between stars, cells, and how life began. University of California Press.

    Book  Google Scholar 

  • Deamer, D. W. (1999). How did it all begin? The self-assembly of organic molecules and the origin of cellular life. In D. A. Springer & J. G. Scotchmoor (Eds.), Evolution: Investigating the evidence (Vol. 9, pp. 221–240). Paleontological Society.

    Google Scholar 

  • Deamer, D. W., & Georgiou, C. D. (2015). Hydrothermal conditions and the origin of cellular life. Astrobiology, 15(12), 1091–1095.

    Article  Google Scholar 

  • Dodd, M. S., Papineau, D., Grenne, T., Slack, J. F., Rittner, M., Pirajno, F., et al. (2017). Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature, 543(7643), 60–64.

    Article  Google Scholar 

  • Doolittle, W. F. (2000). Uprooting the tree of life. Scintific American, 282(2), 90–95.

    Article  Google Scholar 

  • Dutta, A., DuBois, D. L., Roberts, J. A., & Shaw, W. J. (2014). Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures. Proceedings of the National Academy of Sciences of the U.S.A., 111(46), 16286–16291.

    Article  Google Scholar 

  • Dyson, F. J. (1999). Origins of life. Cambridge University Press.

    Book  Google Scholar 

  • Egel, R. (2012). Primal eukaryogenesis: On the communal nature of precellular states, ancestral to modern life. Life (Basel), 2(1), 170–212.

    Google Scholar 

  • Ehrlich, H. L., & Newman, D. K. (2009). Geomicrobiology (5th ed.). CRC Press, Taylor & Francis.

    Google Scholar 

  • Eigen, M., & Schuster, P. (1979). The hypercycle, a principle of natural self-organization. Springer.

    Google Scholar 

  • Gánti, T. (1971). Az élet princípiuma. Gondolat.

    Google Scholar 

  • Gánti, T. (2003 [1971]). The principles of life. Oxford University Press.

    Book  Google Scholar 

  • Gilbert, W. (1986). Origin of life: The RNA world. Nature, 319(6055), 618.

    Article  Google Scholar 

  • Gray, P., & Scott, S. K. (1994). Chemical oscillations and instabilities: Non-linear chemical kinetics. Oxford University Press.

    Google Scholar 

  • Gruzewska, K., Michno, A., Pawelczyk, T., & Bielarczyk, H. (2014). Essentiality and toxicity of vanadium supplements in health and pathology. Journal of Physiology and Pharmacology, 65(5), 603–611.

    Google Scholar 

  • Haldane, J. B. S. (1929). Origin of life. The Rationalist Annual, 148, 3–10.

    Google Scholar 

  • Hartman, H. (1998). Photosynthesis and the origin of life. Origins of Life and Evolution of Biospheres, 28(4–6), 515–521.

    Article  Google Scholar 

  • Herschy, B., Whicher, A., Camprubi, E., Watson, C., Dartnell, L., Ward, J., et al. (2014). An origin-of-life reactor to simulate alkaline hydrothermal vents. Journal of Molecular Evolution, 79(5–6), 213–227.

    Article  Google Scholar 

  • Hoffmeyer, J. (1998). Surfaces inside surfaces. On the origin of agency and life. Cybernetics and Human Knowing, 5(1), 33–42.

    Google Scholar 

  • Hoffmeyer, J. (2011). Biology is immature biosemiotics. In C. Emmeche & K. Kull (Eds.), Towards a semiotic biology. Life is the action of signs (pp. 43–65). Imperial College Press.

    Chapter  Google Scholar 

  • Holliday, G. L., Mitchell, J. B., & Thornton, J. M. (2009). Understanding the functional roles of amino acid residues in enzyme catalysis. Journal of Molecular Biology, 390(3), 560–577.

    Article  Google Scholar 

  • Hordijk, W., & Steel, M. (2004). Detecting autocatalytic, self-sustaining sets in chemical reaction systems. Journal of Theoretical Biology, 227(4), 451–461.

    Article  Google Scholar 

  • Ikehara, K. (2016). Evolutionary steps in the emergence of life deduced from the bottom-up approach and GADV hypothesis (top-down approach). Life (Basel), 6(1), 6.

    Google Scholar 

  • Inger, A., Solomon, A., Shenhav, B., Olender, T., & Lancet, D. (2009). Mutations and lethality in simulated prebiotic networks. Journal of Molecular Evolution, 69(5), 568–578.

    Article  Google Scholar 

  • Jablonka, E., & Szathmáry, E. (1995). The evolution of information storage and heredity. Trends in Ecology and Evolution, 10(5), 206–211.

    Article  Google Scholar 

  • Johnson, S. S., Hebsgaard, M. B., Christensen, T. R., Mastepanov, M., Nielsen, R., Munch, K., et al. (2007). Ancient bacteria show evidence of DNA repair. Proceedings of the National Academy of Science of the U.S.A., 104(36), 14401–14405.

    Article  Google Scholar 

  • Johnston, W. K., Unrau, P. J., Lawrence, M. S., Glasner, M. E., & Bartel, D. P. (2001). RNA-catalyzed RNA polymerization: Accurate and general RNA-templated primer extension. Science, 292(5520), 1319–1325.

    Article  Google Scholar 

  • Joseph, R. (2009). Life on Earth came from other planets. The Journal of Cosmology, 1, 1–56.

    Google Scholar 

  • Kauffman, S. A. (1986). Autocatalytic sets of proteins. Journal of Theoretical Biology, 119(1), 1–24.

    Article  Google Scholar 

  • Kauffman, S. A. (2014). Prolegomenon to patterns in evolution. Biosystems, 123, 3–8.

    Article  Google Scholar 

  • Kellis, M., Wold, B., Snyder, M. P., Bernstein, B. E., Kundaje, A., Marinov, G. K., et al. (2014). Defining functional DNA elements in the human genome. Proceedings of the National Academy of Science of the U.S.A., 111(17), 6131–6138.

    Article  Google Scholar 

  • Klevenz, V., Sumoondur, A., Ostertag-Henning, C., & Koschinsky, A. (2010). Concentrations and distributions of dissolved amino acids in fluids from Mid-Atlantic Ridge hydrothermal vents. Geochemical Journal, 44(5), 387–397.

    Article  Google Scholar 

  • Koonin, E. V. (2003). Comparative genomics, minimal gene-sets and the last universal common ancestor. Nature Reviews Microbiology, 1(2), 127–136.

    Article  Google Scholar 

  • Koonin, E. V. (2009). On the origin of cells and viruses: Primordial virus world scenario. Annals of the New York Academy of Sciences, 1178, 47–64.

    Article  Google Scholar 

  • Koonin, E. V., & Martin, W. (2005). On the origin of genomes and cells within inorganic compartments. Trends in Genetics, 21(12), 647–654.

    Article  Google Scholar 

  • Kritsky, M. S., & Telegina, T. A. (2004). Role of nucleotide-like coenzymes in primitive evolution. In J. Seckbach (Ed.), Origins: Genesis, evolution and diversity of life (pp. 215–231). Kluwer.

    Google Scholar 

  • Kummerle, R., Kyritsis, P., Gaillard, J., & Moulis, J. M. (2000). Electron transfer properties of iron-sulfur proteins. Journal of Inorganic Biochemistry, 79(1–4), 83–91.

    Article  Google Scholar 

  • Lahav, N., White, D., & Chang, S. (1978). Peptide formation in the prebiotic era: Thermal condensation of glycine in fluctuating clay environments. Science, 201(4350), 67–69.

    Article  Google Scholar 

  • Lambert, L. H., Cox, T., Mitchell, K., Rosselló-Mora, R. A., Del Cueto, C., Dodge, D. E., et al. (1998). Staphylococcus succinus sp. nov., isolated from Dominican amber. International Journal of Systematic Bacteriology, 48(2), 511–518.

    Article  Google Scholar 

  • Lane, N., Allen, J. F., & Martin, W. (2010). How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays, 32(4), 271–280.

    Article  Google Scholar 

  • Lane, N., Martin, W. F., Raven, J. A., & Allen, J. F. (2013). Energy, genes and evolution: Introduction to an evolutionary synthesis. Philosophical Transactions of the Royal Society B-Biological Sciences, 368(1622), 20120253.

    Article  Google Scholar 

  • Levy, M., Miller, S. L., Brinton, K., & Bada, J. L. (2000). Prebiotic synthesis of adenine and amino acids under Europa-like conditions. Icarus, 145(2), 609–613.

    Article  Google Scholar 

  • Luisi, P. L. (2015). Chemistry constraints on the origin of life. Israel Journal of Chemistry, 55(8), 906–918.

    Article  Google Scholar 

  • Marcano, V., Benitez, P., & Palacios-Pru, E. (2003). Acyclic hydrocarbon environments >=n-C18 on the early terrestrial planets. Planetary and Space Science, 51(3), 159–166.

    Article  Google Scholar 

  • Markov, A. V., Anisimov, V. A., & Korotayev, A. V. (2010). Relationship between genome size and organismal complexity in the lineage leading from prokaryotes to mammals. Paleontological Journal, 44(4), 363–373.

    Article  Google Scholar 

  • Marzban, C., Viswanathan, R., & Yurtsever, U. (2014). Earth before life. Biology Direct, 9, 1.

    Article  Google Scholar 

  • Matsuno, K. (1997). A design principle of a flow reactor simulating prebiotic evolution. Viva Origino, 25, 191–204.

    Google Scholar 

  • Maturana, H., & Varela, F. (1980). Autopoiesis and cognition: The realization of the living (Boston studies in the philosophy of science) (Vol. 42). D. Reidel Publishing Co..

    Google Scholar 

  • Michitaka, T., Imai, T., & Hashidzume, A. (2017). Formose reaction controlled by a copolymer of N,N-dimethylacrylamide and 4-vinylphenylboronic acid. Polymers, 9(11), 549.

    Article  Google Scholar 

  • Miller, S. L. (1953). A production of amino acids under possible primitive earth conditions. Science, 117(3046), 528–529.

    Article  Google Scholar 

  • Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics, 38(8), 114–117.

    Google Scholar 

  • Morowitz, H. J., Kostelnik, J. D., Yang, J., & Cody, G. D. (2000). The origin of intermediary metabolism. Proceedings of the National Academy of Science of the U.S.A., 97(14), 7704–7708.

    Article  Google Scholar 

  • Mulkidjanian, A. Y. (2009). Origin of life in the Zinc World: 1. Photosynthetic, porous edifices built of hydrothermally precipitated zinc sulfide (ZnS) as cradles of life on Earth. Biology Direct, 4, 26.

    Article  Google Scholar 

  • Mulkidjanian, A. Y., & Galperin, M. Y. (2007). Physico-chemical and evolutionary constraints for the formation and selection of first biopolymers: Towards the consensus paradigm of the abiogenic origin of life. Chemistry & Biodiversity, 4(9), 2003–2015.

    Article  Google Scholar 

  • Mulkidjanian, A. Y., & Galperin, M. Y. (2009). On the origin of life in the Zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biology Direct, 4, 27.

    Article  Google Scholar 

  • Nelson, K. E., Levy, M., & Miller, S. L. (2000). Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proceedings of the National Academy of Science of the U. S.A, 97(8), 3868–3871.

    Article  Google Scholar 

  • Nghe, P., Hordijk, W., Kauffman, S. A., Walker, S. I., Schmidt, F. J., Kemble, H., et al. (2015). Prebiotic network evolution: Six key parameters. Molecular BioSystems, 11(12), 3206–3217.

    Article  Google Scholar 

  • Novozhilov, A. S., Wolf, Y. I., & Koonin, E. V. (2007). Evolution of the genetic code: Partial optimization of a random code for robustness to translation error in a rugged fitness landscape. Biology Direct, 2, 24.

    Article  Google Scholar 

  • Oparin, A. I. (1953 [1924]). The origin of life. Dover Publications.

    Google Scholar 

  • Orgel, L. (2000). Origin of life. A simpler nucleic acid. Science, 290(5495), 1306–1307.

    Article  Google Scholar 

  • Orgel, L. E. (2004). Prebiotic chemistry and the origin of the RNA world. Critical Reviews in Biochemistry and Molecular Biology, 39(2), 99–123.

    Article  Google Scholar 

  • Patel, A. (2005). The triplet genetic code had a doublet predecessor. Journal of Theoretical Biology, 233(4), 527–532.

    Article  Google Scholar 

  • Patrushev, L. I., & Minkevich, I. G. (2008). The problem of the eukaryotic genome size. Biochemistry (Moscow), 73(13), 1519–1552.

    Article  Google Scholar 

  • Peretó, J. (2005). Controversies on the origin of life. International Microbiology, 8(1), 23–31.

    Google Scholar 

  • Powner, M. W., Gerland, B., & Sutherland, J. D. (2009). Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature, 459(7244), 239–242.

    Article  Google Scholar 

  • Rauchfuss, H., & Mitchell, T. N. (2009). Peptides and proteins: The “protein world”. In H. Rauchfuss (Ed.), Chemical evolution and the origin of life (pp. 125–144). Springer.

    Google Scholar 

  • Robertson, M. P., & Joyce, G. F. (2012). The origins of the RNA world. Cold Spring Harbor Perspectives in Biology, 4(5), a003608.

    Article  Google Scholar 

  • Robinson, J. M., & Mikucki, J. A. (2018). Occupied and empty regions of the space of extremophile parameters. In R. Gordon & A. Sharov (Eds.), Habitability of the Universe before Earth (pp. 199–230). Elsevier, Academic Press.

    Chapter  Google Scholar 

  • Rollins, R. A., Haghighi, F., Edwards, J. R., Das, R., Zhang, M. Q., Ju, J., et al. (2006). Large-scale structure of genomic methylation patterns. Genome Research, 16(2), 157–163.

    Article  Google Scholar 

  • Root-Bernstein, M., & Root-Bernstein, R. (2015). The ribosome as a missing link in the evolution of life. Journal of Theoretical Biology, 367, 130–158.

    Article  Google Scholar 

  • Sanchez, R. A., Ferris, J. P., & Orgel, L. E. (1968). Studies in prebiotic synthesis. IV. Conversion of 4-aminoimidazole-5-carbonitrile derivatives to purines. Journal of Molecular Biology, 38(1), 121–128.

    Article  Google Scholar 

  • Segré, D., Ben-Eli, D., Deamer, D. W., & Lancet, D. (2001). The lipid world. Origins of Life and Evolution of Biospheres, 31(1–2), 119–145.

    Article  Google Scholar 

  • Segré, D., Ben-Eli, D., & Lancet, D. (2000). Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies. Proceedings of the National Academy of Science of the U.S.A., 97(8), 4112–4117.

    Article  Google Scholar 

  • Segré, D., Lancet, D., Kedem, O., & Pilpel, Y. (1998). Graded autocatalysis replication domain (GARD): Kinetic analysis of self-replication in mutually catalytic sets. Origins of Life and Evolution of Biospheres, 28(4–6), 501–514.

    Article  Google Scholar 

  • Sharov, A. A. (1992). Biosemiotics: Functional-evolutionary approach to the problem of the sense of information. In T. A. Sebeok & J. Umiker-Sebeok (Eds.), Biosemiotics. The semiotic web 1991 (pp. 345–373). Mouton de Gruyter.

    Google Scholar 

  • Sharov, A. A. (2006). Genome increase as a clock for the origin and evolution of life. Biology Direct, 1, 17.

    Article  Google Scholar 

  • Sharov, A. A. (2009). Coenzyme autocatalytic network on the surface of oil microspheres as a model for the origin of life. International Journal of Molecular Sciences, 10(4), 1838–1852.

    Article  Google Scholar 

  • Sharov, A. A. (2016). Coenzyme world model of the origin of life. Biosystems, 144, 8–17.

    Article  Google Scholar 

  • Sharov, A. A., & Gordon, R. (2013). Life before earth. Arxiv. http://arxiv.org/ftp/arxiv/papers/1304/1304.3381.pdf

    Google Scholar 

  • Sharov, A. A., & Gordon, R. (2018). Life before Earth. In R. Gordon & A. A. Sharov (Eds.), Habitability of the Universe before Earth (pp. 267–298). Elsevier, Academic Press.

    Google Scholar 

  • Shenhav, B., Bar-Even, A., Kafri, R., & Lancet, D. (2005). Polymer GARD: Computer simulation of covalent bond formation in reproducing molecular assemblies. Origins of Life and Evolution of Biospheres, 35(2), 111–133.

    Article  Google Scholar 

  • Shenhav, B., Oz, A., & Lancet, D. (2007). Coevolution of compositional protocells and their environment. Philosophical Transactions of the Royal Society B Biological Sciences, 362(1486), 1813–1819.

    Article  Google Scholar 

  • Simons, C., Pheasant, M., Makunin, I. V., & Mattick, J. S. (2006). Transposon-free regions in mammalian genomes. Genome Research, 16(2), 164–172.

    Article  Google Scholar 

  • Sinnott, E. W. (1962). Matter, mind and man: The biology of human nature. Atheneum.

    Google Scholar 

  • Sponer, J. E., Sponer, J., Novakova, O., Brabec, V., Sedo, O., Zdrahal, Z., et al. (2016). Emergence of the first catalytic oligonucleotides in a formamide-based origin scenario. Chemistry, 22(11), 3572–3586.

    Article  Google Scholar 

  • Szathmáry, E. (1999). The first replicators. In L. Keller (Ed.), Levels of selection in evolution (pp. 31–52). Princeton University Press.

    Google Scholar 

  • Theobald, D. L. (2010). A formal test of the theory of universal common ancestry. Nature, 465(7295), 219–222.

    Article  Google Scholar 

  • Tilman, D., & Kareiva, P. (1997). Spatial ecology: The role of space in population dynamics and interspecific interactions (Monographs in population biology) (Vol. 30). Princeton University Press.

    Google Scholar 

  • Travers, A. (2006). The evolution of the genetic code revisited. Origins of Life and Evolution of Biospheres, 36(5–6), 549–555.

    Google Scholar 

  • Turner, J. S. (2013). Biology’s second law: Homeostasis, purpose and desire. In B. G. Henning & A. C. Scarfe (Eds.), Beyond mechanism: Putting life back into biology (pp. 183–203). Lexington Books.

    Google Scholar 

  • Unrau, P. J., & Bartel, D. P. (1998). RNA-catalysed nucleotide synthesis. Nature, 395(6699), 260–263.

    Article  Google Scholar 

  • Vasas, V., Fernando, C., Santos, M., Kauffman, S., & Szathmary, E. (2012). Evolution before genes. Biology Direct, 7, 1. discussion 1.

    Article  Google Scholar 

  • Vasas, V., Fernando, C., Szilagyi, A., Zachar, I., Santos, M., & Szathmary, E. (2015). Primordial evolvability: Impasses and challenges. Journal of Theoretical Biology, 381, 29–38.

    Article  Google Scholar 

  • Wächtershäuser, G. (1988). Before enzymes and templates: Theory of surface metabolism. Microbiological Reviews, 52(4), 452–484.

    Article  Google Scholar 

  • Wallis, M. K., & Wickramasinghe, N. C. (2004). Interstellar transfer of planetary microbiota. Monthly Notices of the Royal Astronomical Society, 348, 52–61.

    Article  Google Scholar 

  • Weber, B. H. (2007). Emergence of life. Zygon, 42(4), 837–856.

    Article  Google Scholar 

  • Weronski, P., Jiang, Y., & Rasmussen, S. (2007). Molecular dynamics study of small PNA molecules in lipid-water system. Biophysical Journal, 92(9), 3081–3091.

    Article  Google Scholar 

  • Yarus, M. (2011). Getting past the RNA world: The initial Darwinian ancestor. Cold Spring Harbor Perspectives in Biology, 3(4), 3590.

    Article  Google Scholar 

  • Zubarev, D. Y., Rappoport, D., & Aspuru-Guzik, A. (2015). Uncertainty of prebiotic scenarios: The case of the non-enzymatic reverse tricarboxylic acid cycle. Scientific Reports, 5, 8009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharov, A., Tønnessen, M. (2021). Origins of Life. In: Semiotic Agency. Biosemiotics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-89484-9_5

Download citation

Publish with us

Policies and ethics