Skip to main content

Composite Agency

  • Chapter
  • First Online:
Semiotic Agency

Part of the book series: Biosemiotics ((BSEM,volume 25))

  • 410 Accesses

Abstract

In this chapter we argue that the multiplicity of subagents is a typical feature of agency which is necessary for a higher-level agent’s reliable self-construction, robustness, and adaptability. The composite organization allows for a dialectic balance between interests and functions of the whole and its parts. We argue that subagents are semi-autonomous and coexist in a partially cooperative, partially antagonistic unity that evolves over time. They generate adaptive variations of structures and functions that help organisms to improve performance and/or survive severe environmental changes. Subagents interact at both physiological and evolutionary time scales. One interaction strategy is guiding semiogenesis, which happens when one subagent provides scaffolding that facilitates, represses, or re-directs the evolution or learning of another subagent . Composite agents emerge either via integration of homogenous components, i.e. reproduction of identical low-level agents without separation followed by specialization, or symbiogenesis, i.e. integration of diverse low-level agents into a symbiotic community followed by co-adaptation. The long-term future fate of specific composite agents is fundamentally uncertain, and this gives rise to a “mixed identity”. In some cases, agents can acquire subagents (e.g., genes or symbionts) from other organisms. Some subagents may break free, infect other agents, or kill their host organism .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strand is a single chain of nucleotides in DNA, whereas the DNA helix (in a chromosome) is formed by two reverse-complementary strands of DNA bound to each other like two sides of a ladder.

  2. 2.

    See also Chap. 8.

  3. 3.

    See Chap. 4 for discussion of the origin of life.

  4. 4.

    For instance, Gödel sentences in a formal system are observed as true but cannot be deduced from axioms (Baas & Emmeche, 1997).

References

  • Baas, N. A. (2006). Hyperstructures as abstract matter. Advances in Complex Systems, 9(3), 157–182.

    Article  Google Scholar 

  • Baas, N. A., & Emmeche, C. (1997). On emergence and explanation. Intellectica, 2(25), 67–83.

    Google Scholar 

  • Baldwin, M. J. (1896). A new factor in evolution. American Naturalist, 30, 441–451.

    Article  Google Scholar 

  • Barton, E. S., White, D. W., Cathelyn, J. S., Brett-McClellan, K. A., Engle, M., Diamond, M. S., et al. (2007). Herpesvirus latency confers symbiotic protection from bacterial infection. Nature, 447(7142), 326–329.

    Article  Google Scholar 

  • Bonavita, V., & De Simone, R. (2011). Pain as an evolutionary necessity. Neurological Sciences, 32, 61–66.

    Article  Google Scholar 

  • Bright, M., & Bulgheresi, S. (2010). A complex journey: Transmission of microbial symbionts. Nature Reviews Microbiology, 8(3), 218–230.

    Article  Google Scholar 

  • Bruni, L. E., & Giorgi, F. (2016). Multi-level semiosis: A paradigm of emergent innovation. Biosemiotics, 9(3), 307–318.

    Article  Google Scholar 

  • Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., Vega, V. B., et al. (2008). Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 133(6), 1106–1117.

    Article  Google Scholar 

  • Core, A., Runckel, C., Ivers, J., Quock, C., Siapno, T., Denault, S., et al. (2012). A new threat to honey bees, the parasitic phorid fly Apocephalus borealis. PLoS One, 7(1), e29639.

    Article  Google Scholar 

  • ENCODE Consortium. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414), 57–74.

    Article  Google Scholar 

  • Gilbert, S. F., Sapp, J., & Tauber, A. I. (2012). A symbiotic view of life: We have never been individuals. The Quarterly Review of Biology, 87(4), 325–341.

    Article  Google Scholar 

  • Ginsburg, S., & Jablonka, E. (2019). The evolution of the sensitive soul. Learning and the origin of consciousness. MIT Press.

    Google Scholar 

  • Herculano-Houzel, S. (2009). The human brain in numbers: A linearly scaled-up primate brain. Frontiers in Human Neuroscience, 3, 31.

    Article  Google Scholar 

  • Ho, B., Baryshnikova, A., & Brown, G. W. (2018). Unification of protein abundance datasets yields a quantitative Saccharomyces cerevisiae proteome. Cell Systems, 6(2), 192–205. e193.

    Article  Google Scholar 

  • Hoffmeyer, J., & Stjernfelt, F. (2016). The great chain of semiosis. Investigating the steps in the evolution of semiotic competence. Biosemiotics, 9(1), 7–29.

    Article  Google Scholar 

  • Honegger, R. (2012). The symbiotic phenotype of lichen-forming Ascomycetes and their endo- and epibionts. In B. Hock (Ed.), Fungal associations (The Mycota) (Vol. IX, 2nd ed., pp. 287–339). Springer.

    Chapter  Google Scholar 

  • Ingram, W. M., Goodrich, L. M., Robey, E. A., & Eisen, M. B. (2013). Mice infected with low-virulence strains of Toxoplasma gondii lose their innate aversion to cat urine, even after extensive parasite clearance. PLoS One, 8(9), e75246.

    Article  Google Scholar 

  • Kikuchi, Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K., & Fukatsu, T. (2012). Symbiont-mediated insecticide resistance. Proceedings of the National Academy of Science of the U.S.A., 109(22), 8618–8622.

    Article  Google Scholar 

  • Koonin, E. V., & Galperin, M. Y. (2003). Sequence – evolution – function: Computational approaches in comparative genomics. Kluwer Academic.

    Book  Google Scholar 

  • Krishnan, H. R., Sakharkar, A. J., Teppen, T. L., Berkel, T. D., & Pandey, S. C. (2014). The epigenetic landscape of alcoholism. International Review of Neurobiology, 115, 75–116.

    Article  Google Scholar 

  • Lederberg, J. (1951). Inheritance, variation, and adaptation. In C. H. Werkman & P. W. Wilson (Eds.), Bacterial physiology (pp. 67–100). Academic.

    Chapter  Google Scholar 

  • Lemke, J. L. (2000). Opening up closure: Semiotics across scales. Annals of the New York Academy of Sciences, 901, 100–111.

    Article  Google Scholar 

  • Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., & Darnell, J. (2000). Molecular cell biology (4th ed.). W. H. Freeman and.

    Google Scholar 

  • Lorenz, K. (2002 [1963]). On aggression (M. K. Wilson, Trans.). Routledge.

    Google Scholar 

  • Luongo, T. S., Lambert, J. P., Yuan, A., Zhang, X., Gross, P., Song, J., et al. (2015). The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell Reports, 12(1), 23–34.

    Article  Google Scholar 

  • Margulis, L. (1998). Symbiotic planet: A new look at evolution. Basic Books.

    Google Scholar 

  • Maynard Smith, J., & Szathmáry, E. (1995). The major transitions in evolution. W.H. Freeman Spektrum.

    Google Scholar 

  • McCulloch, W. (1945). A heterarchy of values determined by the topology of nervous nets. Bulletin Mathematical Biophysics, 7, 89–93.

    Article  Google Scholar 

  • Mikhailovsky, G. (2018a). From identity to uniqueness: The emergence of increasingly higher levels of hierarchy in the process of the matter evolution. Entropy, 20(533), 1–18.

    Google Scholar 

  • Mikhailovsky, G. (2018b). General evolution of the universe driven by attraction and four levels of biological evolution as its essential part. Journal of Evolutionary Science, 1(1), 1–13.

    Article  Google Scholar 

  • Minsky, M. (1986). The society of mind. Simon and Schuster.

    Google Scholar 

  • Murchison, E. P., Wedge, D. C., Alexandrov, L. B., Fu, B., Martincorena, I., Ning, Z., et al. (2014). Transmissible dog cancer genome reveals the origin and history of an ancient cell lineage. Science, 343(6169), 437–440.

    Article  Google Scholar 

  • O’Malley, M. A., & Koonin, E. V. (2011). How stands the tree of life a century and a half after the origin? Biology Direct, 6, 32.

    Article  Google Scholar 

  • Pigliucci, M., & Müller, G. B. (2010). Elements of an extended evolutionary synthesis. In M. Pigliucci & G. B. Müller (Eds.), Evolution – The extended synthesis. MIT Press.

    Chapter  Google Scholar 

  • Plattner, H. (2015). Molecular aspects of calcium signalling at the crossroads of unikont and bikont eukaryote evolution--The ciliated protozoan Paramecium in focus. Cell Calcium, 57(3), 174–185.

    Article  Google Scholar 

  • Puigbo, P., Wolf, Y. I., & Koonin, E. V. (2013). Seeing the tree of life behind the phylogenetic forest. BMC Biology, 11, 46.

    Article  Google Scholar 

  • Ramoino, P., Beltrame, F., Diaspro, A., & Fato, M. (1996). Time-variant analysis of organelle and vesicle movement during phagocytosis in Paramecium primaurelia by means of fluorescence confocal laser scanning microscopy. Microscopy Research and Technique, 35(5), 377–384.

    Article  Google Scholar 

  • Russell, R. J., Scott, C., Jackson, C. J., Pandey, R., Pandey, G., Taylor, M. C., et al. (2011). The evolution of new enzyme function: Lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects. Evolutionary Applications, 4(2), 225–248.

    Article  Google Scholar 

  • Schieber, M. (1990). How might the motor cortex individuate movements? Trends in Neuroscience, 13(11), 440–444.

    Article  Google Scholar 

  • Schlosser, G. (2004). The role of modules in development and evolution. In G. Schlosser & G. P. Wagner (Eds.), Modularity in development and evolution (pp. 519–582). University of Chicago Press.

    Google Scholar 

  • Schmalhausen, I. I. (1949). Factors of evolution: The theory of stabilizing selection. Blakiston.

    Google Scholar 

  • Schott, G. D. (1993). Penfield’s homunculus: A note on cerebral cartography. Journal of Neurology, Neurosurgery, and Psychiatry, 56(4), 329–333.

    Article  Google Scholar 

  • Scott, D. (2014). Gilbert Simondon’s psychic and collective individuation: A critical introduction and guide. Edinburgh University Press.

    Book  Google Scholar 

  • Seckbach, J. (Ed.). (2006). Symbiosis: Mechanisms and model systems. Kluwer Academic Publishers.

    Google Scholar 

  • Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLoS Biology, 14(8), e1002533.

    Article  Google Scholar 

  • Sharov, A. A. (2017). Composite agency: Semiotics of modularity and guiding interactions. Biosemiotics, 10(2), 157–178.

    Article  Google Scholar 

  • Szathmáry, E., & Maynard Smith, J. (1995). The major evolutionary transitions. Nature, 374, 227–232.

    Article  Google Scholar 

  • Treangen, T. J., & Salzberg, S. L. (2011). Repetitive DNA and next-generation sequencing: Computational challenges and solutions. Nature Reviews Genetics, 13(1), 36–46.

    Article  Google Scholar 

  • Turchin, V. F. (1977). The phenomenon of science. Columbia University Press.

    Google Scholar 

  • Turner, J. S. (2000). The extended organism. The physiology of animal-built structures. Harvard University Press.

    Google Scholar 

  • Vander Elst, N., & Meyer, E. (2018). Potential therapeutic application of bacteriophages and phage-derived endolysins as alternative treatment of bovine mastitis. Vlaams Diergeneeskundig Tijdschrift, 87(4), 181–186.

    Article  Google Scholar 

  • Villarreal, L. P. (2009). Origin of group identity. Viruses, addiction and cooperation. Springer.

    Google Scholar 

  • Vinay, D. S., Ryan, E. P., Pawelec, G., Talib, W. H., Stagg, J., Elkord, E., et al. (2015). Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Seminars in Cancer Biology, 35(Suppl), S185–S198.

    Article  Google Scholar 

  • Waddington, C. H. (1968). Towards a theoretical biology. Nature, 218(5141), 525–527.

    Article  Google Scholar 

  • Wagner, G. P. (1996). Homologues, natural kinds and the evolution of modularity. American Zoologist, 36, 36–43.

    Article  Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharov, A., Tønnessen, M. (2021). Composite Agency. In: Semiotic Agency. Biosemiotics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-89484-9_10

Download citation

Publish with us

Policies and ethics