Skip to main content

Pregnancy-Associated Proteins as a Tool in the Therapy of Autoimmune Diseases and Alloimmune Disorders (Review)

  • Conference paper
  • First Online:
Science and Global Challenges of the 21st Century - Science and Technology (Perm Forum 2021)

Abstract

From the point of view of reproductive immunology, pregnancy is the only physiological phenomenon in which the immune system, recognizing fetal alloantigens, implements a response in the form of systemic (central) and peripheral tolerance. The factors that induce central tolerance in pregnancy are proteins associated with pregnancy. Conceptually, the embryo is a semi-allogenic transplant. Presumably, only a few molecules regulate the immune tolerance of the mother - glycodelin, human chorionic gonadotropin (hCG), Pregnancy-specific β1-glycoprotein (PSG), and alpha-fetoprotein (AFP) can be included in this list. Significantly, these molecules have evolved to perform a range of biological functions, including immunosuppression. Logically, it is necessary to try to apply the evolutionary potential in the practice of therapy for autoimmune diseases and transplantation. In this review, we consider information about the mechanisms of protein’s action on immune tolerance, as well as options for their using as pharmacological drugs. Exactly clinical situations require suppression “point” of the immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sotnikova, N.: Formation of the phenomenon of immunological memory in the dynamics of the gestational process. Russ. J. Immunol. 4(13), 321–326 (2010)

    Google Scholar 

  2. Wegmann, T., Lin, H., Guilbert, L., Mosmann, T.: Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon. Immunol. Today 14, 353–356 (1993)

    Article  Google Scholar 

  3. Saito, S., Nakashima, A., Shima, T., Ito, M.: Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol. 601, 601–610 (2010)

    Article  Google Scholar 

  4. Durr, S., Kindler, V.: Implication of indolamine-2,3-dioxygenase in the tolerance toward fetuses, tumors and allografts. J. Leukoc. Biol. 93, 681–687 (2013)

    Article  Google Scholar 

  5. Kieffer, T., Faas, M., Scherjon, S., Prins, J.: Pregnancy persistently affects memory T cell populations. J. Reprod. Immunol. 119, 1–8 (2016)

    Article  Google Scholar 

  6. Kieffer, T., Laskewitz, A., Scherjon, S., Faas, M., Prins, J.: Memory T cells in pregnancy. Front. Immunol. 10, 625 (2019)

    Article  Google Scholar 

  7. Dong, M., Ding, G., Zhou, J., Wang, H., Zhao, Y., Huang, H.: The effect of trophoblasts on T lymphocytes: possible regulatory effector molecules–a proteomic analysis. Cell Physiol. Biochem. 21, 463–472 (2008)

    Article  Google Scholar 

  8. Tatarinov, Y., Masyukevich, V.: Immunochemical identification of new β1-globulin in the blood serum of pregnant women. Bull. Exp. Biol. Med. 69(6), 66–69 (1970)

    Article  Google Scholar 

  9. Tatarinov, Y.: Trophoblast-specific beta1-glycoprotein as a marker for pregnancy and malignancies. Gynecol. Obstet. Invest. 9, 65–97 (1978)

    Article  Google Scholar 

  10. Posiseeva, L., Nazarov, S., Tatarinov, Y.: Trophoblast-specific beta-glycoprotein in obstetrics and gynecology. Ivanovo Publishing, Ivanovo (2004)

    Google Scholar 

  11. Grudzinskas, J., Gordon, Y., Menabawey, M., Lee, J., Wadsworth, J., Chard, T.: Identification of high- risk pregnancy by the routine measurement of pregnancy-specific beta 1-glycoprotein. Am. J. Obstet. Gynecol. 147, 10–12 (1983)

    Article  Google Scholar 

  12. MacDonald, D., Scott, J., Gemmell, R., Mack, D.: A prospective study of three biochemical fetoplacental tests: serum human placental lactogen, pregnancy-specific beta 1 glycoproteins, and urinary estrogens, and their relationship to placental sufficiency. American J. Obstet. Gynecol. 147, 430–436 (1983)

    Article  Google Scholar 

  13. Temur, M., Serpim, G., Tuzluoğlu, S., Taşgöz, F., Şahin, E., Üstünyurt, E.: Comparison of serum human pregnancy-specific beta-1- glycoprotein 1 levels in pregnant women with or without preeclampsia. J. Obstet. Gynaecol. 8, 1074–1078 (2020)

    Article  Google Scholar 

  14. Timganova, V., Bochkova, M., Khramtsov, P., Rayev, M., Zamorina, S.: Immunoregulatory potential of pregnancy-specific β1-glycoprotein. Med. Immunol. 23(3), 471–484 (2021)

    Article  Google Scholar 

  15. Martinez, F., Cervi, L., Knubel, C., Panzetta-Dutari, G., Motran, C.: The role of pregnancy-specific glycoprotein 1a (PSG1a) in regulating the innate and adaptive immune response. Am. J. Reprod. Immunol. 69, 383–394 (2013)

    Article  Google Scholar 

  16. Martinez, F., Knubel, C., Sanchez, M., et al.: Pregnancy-specific glycoprotein 1a activates dendritic cells to provide signals for Th17-, Th2-, and Treg-cell polarization. Eur. J. of Immunol. 42, 1573–1584 (2013)

    Article  Google Scholar 

  17. Falcón, C., Martínez, F., Carranza, F., Cervi, L., Motrán, C.: In vivo expression of recombinant pregnancy-specific glycoprotein 1a inhibits the symptoms of collagen-induced arthritis. Am. J. Reprod. Immunol. 72, 527–533 (2014)

    Article  Google Scholar 

  18. Blois, S., et al.: Pregnancy-specific glycoprotein 1 (PSG1) activates TGF-β and prevents dextran sodium sulfate (DSS)-induced colitis in mice. Mucosal Immunol. 7, 348–358 (2014)

    Article  Google Scholar 

  19. Zamorina, S., Rayev, M.: Immunomodulating effects of human pregnancy-specific beta1-glycoprotein. Hum. Physiol. 41, 98–103 (2015)

    Article  Google Scholar 

  20. Zamorina, S., Rayev, M.: Human trophoblastic β1-glycoprotein as a differentiation factor of minor regulatory T-lymphocyte subsets (TREG, TH17). The involvement of CD9. Biolog. Membr. 33(4), 278–286 (2016)

    Google Scholar 

  21. Jones, K., et al.: Recombinant pregnancy-specific glycoprotein 1 has a protective role in a murine model of acute graft-versus- host disease. Biol. Blood Marrow Transplant. 25, 193–203 (2019)

    Article  Google Scholar 

  22. Jones, K., et al.: PSG9 stimulates increase in FoxP3+ regulatory T-cells through the TGF-β1 pathway. PLOS ONE 11(7), e0158050 (2016)

    Article  Google Scholar 

  23. Dixit, A., Karande, A.: Glycodelin regulates the numbers and function of peripheral natural killer cells. J. Reprod. Immunol. 137, 102625 (2020)

    Article  Google Scholar 

  24. Schneider, M., Muley, T., Kahn, N., et al.: Glycodelin is a potential novel follow-up biomarker for malignant pleural mesothelioma. Oncotarget 7(44), 1–13 (2016)

    Google Scholar 

  25. Cui, J., Liu, Y., Wang, X.: The roles of glycodelin in cancer, development and progression. Front. Immunol. 8, 1685 (2017)

    Article  Google Scholar 

  26. Vijayan, M., Lee, C.-L., et al.: Decidual glycodelin-A polarizes human monocytes towards a decidual macrophage-like phenotype via siglec-7. J. Cell Sci. 133, 14 (2020). https://doi.org/10.1242/jcs.244400

    Article  Google Scholar 

  27. Riquelme, P., Haarer, J., Kammler, A., Walter, L., et al.: TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity. Nature Communications 9, 2858 (2018). https://doi.org/10.1038/s41467-018-05167-8

    Article  Google Scholar 

  28. Midgley, A., Pierce, G.: Immunohistochemical localization of human chorionic gonadotropin. J. Exp. Med. 115, 289 (1962)

    Article  Google Scholar 

  29. Cole, L.: hCG, five independent molecules. Clin. Chim. Acta 413(1–2), 48–65 (2012)

    Article  Google Scholar 

  30. Rao, C.V.: Potential therapy for rheumatoid arthritis and Sjögren syndrome with human chorionic gonadotropin. Reprod. Sci. 23(5), 566–571 (2015)

    Article  Google Scholar 

  31. Del, A., et al.: Human chorionic gonadotropin influences systemic autoimmune responses. Front Endocrinol. (Lausanne) 9, 742 (2018)

    Article  Google Scholar 

  32. Holtan, S., Hoeschen, A., Cao, Q., et al.: Facilitating resolution of life-threatening acute GVHD with human chorionic gonadotropin and epidermal growth factor. Blood Adv. 4(7), 1284–1295 (2020)

    Article  Google Scholar 

  33. Elmaagacli, A., et al.: Human chorionic gonadotropin and indolamine 2,3-dioxygenase in patients with GVHD. Bone Marrow Transp. 49(6), 800–805 (2014)

    Article  Google Scholar 

  34. Jahanshahi, M., Saeidi, M., Nikmahzar, E., Babakordi, F., Bahlakeh, G.: Effects of hCG on reduced numbers of hCG receptors in the prefrontal cortex and cerebellum of rat models of Alzheimer’s disease. Biotech. Histochem. 94(5), 360–365 (2019)

    Article  Google Scholar 

  35. Terentyev, A.: Alpha-Fetoprotein as a biomarker of the fetal period, using in diagnostics. Int. J. Appl. Fundam. Res. 12, 114–117 (2011)

    Google Scholar 

  36. Dudich, E.: MM-093, a recombinant human alpha-fetoprotein for the potential treatment of rheumatoid arthritis and other autoimmune diseases. Curr. Opin. Mol. Ther. 9(6), 603–610 (2008)

    Google Scholar 

  37. Chereshnev, V., Rodionov, S., Cherkasov, V., Malyutina, N., Orlov, O.: Alpha-fetoprotein. Ural Branch of the Russian Academy of Sciences, Yekaterinburg (2004)

    Google Scholar 

Download references

Acknowledgments

The work was performed as part of the state assignment, state registration number: AAAA-A19–119112290007-7 (“IEGM UB RAS”) and the Russian Foundation for Basic Research № 19-29-04055.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zamorina, S.A., Troynich, Y.N., Loginova, N.P., Charushina, Y.A., Shardina, K.Y., Timganova, V.P. (2022). Pregnancy-Associated Proteins as a Tool in the Therapy of Autoimmune Diseases and Alloimmune Disorders (Review). In: Rocha, A., Isaeva, E. (eds) Science and Global Challenges of the 21st Century - Science and Technology. Perm Forum 2021. Lecture Notes in Networks and Systems, vol 342. Springer, Cham. https://doi.org/10.1007/978-3-030-89477-1_38

Download citation

Publish with us

Policies and ethics