Abstract
In Chapter 4, we analysed artificial intelligence (AI) as a technological innovation system (TIS) dominated by the tech giants. This chapter gives insights into the emergence and dynamics of this system. We explore the technological convergence between two tech giants with quite distinct origins using lexical analyses of these companies’ patents and scientific publications. We find that both Amazon and Microsoft have zoomed in their research and development (R&D) efforts on deep learning and neural networks as well as functional AI applications. We also find evidence of increasing centrality of harvesting, storing and processing data. R&D on cloud computing infrastructure is another area where both companies overlap. Given their dominant role in the AI TIS and the importance of economic factors in the selection of the cluster of technologies that constitute technological paradigms, we argue that these companies’ priorities are indicative of the prevailing directions within AI technological trajectories.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
This advantage, as we explained in previous chapters, is explained by knowledge cumulativeness and, in particular for the digital sector, by network effects that results in more harvested data and therefore “more productive refineries”—more accurate AI models.
- 2.
- 3.
- 4.
Our access to this database included the following patent offices: USPTO, WIPO, European, Japan, Australian, British, Canadian, French, German, Russian and Korean patent offices.
- 5.
CorText is an open platform for performing bibliometric and semantic analysis that uses the spatial algorithms that draw on classic graph visualization methods for depicting the network maps (Fruchterman–Reingold). It can be accessed online at https://www.cortext.net/.
- 6.
“Words can have different meanings, the same meaning or concept can be expressed by different words, and words can have semantic associations in a hierarchical relation (e.g., animal versus mammal versus cat and dog). Last, not all words are of equal importance in deriving the meaning of phrases, but words with less significance appear with very high-frequency” (Van Looy & Magerman, 2019, p. 932).
- 7.
In network analysis, nodes occupying bridging positions are nodes that connect different clusters. They are of particular relevance for holding the clusters together and “in the dynamics of spreading processes across the network” (Fortunato & Hric, 2016).
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
References
Arthur, C. (2012). Digital wars: Apple, Google, Microsoft and the battle for the Internet. Kogan Page Publishers.
Baeza-Yates, R., Sangal, P. M., & Villoslada, P. (2017). Burden of neurological diseases in the US revealed by web searches. Plos One, 12(5), e0178019.
Choi, S., Yoon, J., Kim, K., Lee, J. Y., & Kim, C.-H. (2011). SAO network analysis of patents for technology trends identification: A case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells. Scientometrics, 88(3), 863.
Cusumano, M. A., Gawer, A., & Yoffie, D. B. (2019). The business of platforms: Strategy in the age of digital competition, innovation, and power. HarperCollins Publishers.
Dosi, G. (1981). Technical change and survival: Europe’s semiconductor industry. LEM Book Series.
Dosi, G. (1982). Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change. Research Policy, 11(3), 147–162.
Fortunato, S., & Hric, D. (2016). Community detection in networks: A user guide. Physics Reports, 659, 1–44. https://doi.org/10.1016/j.physrep.2016.09.002
Ibarra, H., & Rattan, A. (2018). Microsoft: Instilling a growth mindset. London Business School Review, 29(3), 50–53.
Khan, L. (2017). Amazon’s Antitrust Paradox. The Yale Law Journal, 126(3), 710–805.
Madani, F., & Weber, C. (2016). The evolution of patent mining: Applying bibliometrics analysis and keyword network analysis. World Patent Information, 46, 32–48.
Pisano, G. P. (2015). You need an innovation strategy. Harvard Business Review, 93(6), 44–54.
Rikap, C. (2020). Amazon: A story of accumulation through intellectual rentiership and predation. Competition & Change. https://doi.org/10.1177/1024529420932418
Srnicek, N. (2017). Platform capitalism. Wiley.
Testoni, F. E., García Carrillo, M., Gagnon, M.-A., Rikap, C., & Blaustein, M. (2021). Whose shoulders is health research standing on? Determining the key actors and contents of the prevailing biomedical research agenda. PloS One, 16(4), e0249661.
UNCTAD. (2019). Digital Economy Report 2019: Value creation and capture–Implications for developing countries. United Nations.
Van Looy, B., & Magerman, T. (2019). Using text mining algorithms for patent documents and publications. In Springer handbook of science and technology indicators (pp. 929–956). Springer.
World Intellectual Property Organization. (2019). WIPO technology trends 2019: Artificial intelligence. WIPO.
Yoon, J., Choi, S., & Kim, K. (2011). Invention property-function network analysis of patents: A case of silicon-based thin film solar cells. Scientometrics, 86(3), 687–703.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Rikap, C., Lundvall, BÅ. (2021). Amazon and Microsoft: Convergence and the Emerging AI Technology Trajectory. In: The Digital Innovation Race. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-89443-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-89443-6_5
Published:
Publisher Name: Palgrave Macmillan, Cham
Print ISBN: 978-3-030-89442-9
Online ISBN: 978-3-030-89443-6
eBook Packages: Economics and FinanceEconomics and Finance (R0)