Skip to main content

Computing Extracellular Electric Potentials from Neuronal Simulations

  • Chapter
  • First Online:
Computational Modelling of the Brain

Part of the book series: Advances in Experimental Medicine and Biology ((CNNCSN,volume 1359))

Abstract

Measurements of electric potentials from neural activity have played a key role in neuroscience for almost a century, and simulations of neural activity is an important tool for understanding such measurements. Volume conductor (VC) theory is used to compute extracellular electric potentials stemming from neural activity, such as extracellular spikes, multi-unit activity (MUA), local field potentials (LFP), electrocorticography (ECoG), and electroencephalography (EEG). Further, VC theory is also used inversely to reconstruct neuronal current source distributions from recorded potentials through current source density methods. In this book chapter, we show how VC theory can be derived from a detailed electrodiffusive theory for ion concentration dynamics in the extracellular medium, and we show what assumptions must be introduced to get the VC theory on the simplified form that is commonly used by neuroscientists. Furthermore, we provide examples of how the theory is applied to compute spikes, LFP signals, and EEG signals generated by neurons and neuronal populations.

Torbjørn V. Ness and Geir Halnes authors have contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgements

This research has received funding from the European Union Horizon 2020 Framework Programme for Research and Innovation under Specific Grant Agreement No. 785907 and No. 945539 [Human Brain Project (HBP) SGA2 and SGA3], and the Research Council of Norway (Notur, nn4661k; DigiBrain, no. 248828; INCF National Node, no. 269774).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ness, T.V., Halnes, G., Næss, S., Pettersen, K.H., Einevoll, G.T. (2022). Computing Extracellular Electric Potentials from Neuronal Simulations. In: Giugliano, M., Negrello, M., Linaro, D. (eds) Computational Modelling of the Brain. Advances in Experimental Medicine and Biology(), vol 1359. Springer, Cham. https://doi.org/10.1007/978-3-030-89439-9_8

Download citation

Publish with us

Policies and ethics