Skip to main content

Extension of CTMC Calculations to Multielectron Systems

  • Chapter
  • First Online:
Classical Treatment of Collisions Between Ions and Atoms or Molecules

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 118))

  • 302 Accesses

Abstract

Due to the quality of a large number of results obtained with the CTMC, method for collisions involving H and He targets, it is obviously tempting to extend the method to multielectronic targets. The simplest target to use seems to be Li, which has two electrons in the 1s orbital and a less bound electron on the 2s shell. Then, the method is extended to multielectronic targets such as Ne or Ar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The electron loss process definition depends onto the authors. Here, it characterizes the ionization of the projectile, while in most cases it means charge changing.

  2. 2.

    The ED model is not detailed here for reasons of clarity. For more details see [16].

References

  1. Niehaus, A.: A classical model for multiple-electron capture in slow collisions of highly charged ions with atoms. J. Phys. B 29, 2925 (1986)

    Article  ADS  Google Scholar 

  2. Ito, H., Chihara, Y., Suzuki, Y., Hirayama, T., Koizumi, T.: Multiple charge transfer by slow multi-charged Xe ions. J. Phys. Conf. Ser. 58, 069 (2007)

    Article  Google Scholar 

  3. Ishii, K., Okuno, K.: Modified classical over barrier model for multi-charged ions in collisions with multiple electron targets at energies below 1 keV/u. Plasma Sci. Techno. 12, 369 (2010)

    Article  ADS  Google Scholar 

  4. Man, Z., Zhenye, W., Sufen, L., Peng, X., Haoxin, Z.: Multiple ionization cross sections of Ne and CO induced by very high-q fast projectiles (q/v > 1). J. Appl. Math. Phys. 6, 2343 (2018)

    Article  Google Scholar 

  5. Selberg, N., Biedermann, C., Cederquist, H.: Semiempirical scaling laws for electron capture at low energies. Phys. Rev. A 54, 4127 (1996)

    Article  ADS  Google Scholar 

  6. Selberg, N., Biedermann, C., Cederquist, H.: Absolute charge exchange cross sections for the interaction between slow Xeq+ (15 ≤ q ≤ 43) projectiles and neutral He, Ar and Xe. Phys. Rev. A 56, 4623 (1997)

    Article  ADS  Google Scholar 

  7. Cornelius, K.R., Wojtkowski, K., Olson, R.E.: State-selective cross sections scalings for electron capture collisions. J. Phys. B 33, 2017 (2000)

    Article  ADS  Google Scholar 

  8. Pascale, J., Olson, R.E., Reinhold, C.O.: State-selective capture in collisions between ions and ground- and excited-state alkali-metal atoms. Phys. Rev. A 42, 5305 (1990)

    Article  ADS  Google Scholar 

  9. Mac Adams, K.B., Martin, N.L.S., Smith, D.B., Rolfes, R. G., Richards, D.: Electron loss from Na Rydberg atoms by ion impact. Phys. Rev. A 34, 4661 (1986)

    Google Scholar 

  10. Knoop, S., Olson, R.E., Ott, H., Hasan, V.G., Morgenstern, R., Hoekstra, R.: Single ionization and electron capture in He2+ + Na collisions. J. Phys. B 38, 1987 (2005)

    Article  ADS  Google Scholar 

  11. Otranto, S., Blank, I., Olson, R.E., Hoekstra, R.: Oscillatory pattern in angular differential ion-atom charge exchange cross sections: the role of electron saddle swaps. AIP Conf. Proc. 27, 1525 (2013)

    Google Scholar 

  12. Ma, M.X., Kon, B.H., Liu, L., Wu, Y., Wang, J.G.: Electron capture of Li3+ions with ground and excited states of Li atoms. Chin. Phys. B 29 013401 (2020)

    Google Scholar 

  13. Otranto, S., Hoekstra, R., Olson, R.E.: Role of electron saddle swaps in the photon spectra following Li3+ charge exchange with H* (n = 2=, Na (3s), Na* (3p) and Li (2s) targets. Phys. Rev. A 89, 022705 (2014)

    Google Scholar 

  14. Otranto, S., Olson, R.E.: X-ray emission cross sections following Ar18+ charge-exchange collisions on neutral argon: the role of the multiple electron capture. Phys. Rev. A 83, 032710 (2011)

    Google Scholar 

  15. Schlachter, A.S.: Collisions of highly stripped ions at MeV energies in gas targets: Charge transfer and ionization. IEEE Trans. Nucl. Sci. 28, 1039 (1981)

    Article  ADS  Google Scholar 

  16. Shevelko, V.P., Kato, D., Litsarev, M.S., Tawara, H.: The energy-deposition model: Electron loss of heavy ions in collisions with neutral atoms at low and intermediate energies. NIFS Data 112, 1 (2010)

    Google Scholar 

  17. Berg, H., Dörner, R., Kelbch, C., Kelbch, S., Ullrich, J., Hagmann, S., Richard, P., Schmidt-Böcking, H., Schlachter, A.S., Prior, M., Crawford, H.J., Engelage, J.M., Flores, I., Loyd, D.H., Pedersen, J., Olson, R.E.: Multiple ionization of rare gases by high-energy uranium ions. J. Phys. B 21, 3929 (1988)

    Article  ADS  Google Scholar 

  18. Fiol, J., Olson, R.E., Santos, A.C.F., Sigaud, G.M., Montenegro, E.C.: Simultaneous projectile and target ionization in He+ + Ne collisions. J. Phys. B 34, L503 (2001)

    Article  ADS  Google Scholar 

  19. Ali, R., Neill, P.A., Beiersdorfer, P., Harris, C.L., Rakovich, M.J., Wang, J.G.. Schultz, D.R., Stancil, P.C.: On the significance of the contribution of multiple-electron capture processes to cometary X-ray emission. Astrophys. J. 629, L125 (2005)

    Google Scholar 

  20. Frémont, F.: Electron capture and single ionization in H+ + Ar collisions: classical calculations. J. Phys. B 49, 065206 (2016)

    Google Scholar 

  21. Labaigt, G., Jorge, A., Illescas, C., Bérof, K., Dubois, A., Pons, B., Chabot, M.: Electron capture and ionization processes in high velocity , C + Ar and , C + He collisions. J. Phys. B. 48, 075201 (2015)

    Google Scholar 

  22. Ullrich, J., Olson, R.E., Schmidt-Böcking, H., Schmidt, S., Dörner, R., Dangendorf, V., Berg, H.: Multiple ionization and collective electron emission in MeV/u uranium-ion rare gas collisions. J. de Phys. Colloques 50, 29 (1989)

    Article  Google Scholar 

  23. Otranto, S., Cariatore, N.D., Olson, R.E.: X-ray emission produced in charge-exchange collisions between highly charged ions and argon: Role of the multiple electron capture. Phys. Rev. A 90, 062708 (2014)

    Google Scholar 

  24. Ali, R., Cocke, C.L., Raphaelian, M.L.A., Stockli, M.: Multielectron processes in 10 keV/u Arq+(5 ≤ q ≤ 17) collisions. Phys. Rev. A 49, 3586 (1994)

    Article  ADS  Google Scholar 

  25. Sulik, B., Tokési, K, Awaya, Y., Kambara, T.. Kanai Y.: Single and double K-shell vacancy production in N7++ Ti collisions. Nucl. Instr. Meth. Phys. Res. B 154, 286 (1999)

    Google Scholar 

  26. Sarkadi, L., Lugosi, L., Tokési, K., Gulyas, Kövér, A.: Study of the transfer ionization process by observing the electron cusp in 100–300 keV He2++ He collisions. J. Phys. B 34, 4901 (2001)

    Google Scholar 

  27. Tokési, K., Tskhakaya, D., Coster, D.: Atomic data for integrated modelling-Fermi-shuttle type ionization as a possible source of high energy electrons. EPJ Web Conf. 79, 02003 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francois Frémont .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frémont, F. (2021). Extension of CTMC Calculations to Multielectron Systems. In: Classical Treatment of Collisions Between Ions and Atoms or Molecules. Springer Series on Atomic, Optical, and Plasma Physics, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-030-89428-3_5

Download citation

Publish with us

Policies and ethics