Skip to main content

Mechanical Testing of Additive Manufacturing Materials

  • Chapter
  • First Online:
Innovations in Additive Manufacturing

Part of the book series: Springer Tracts in Additive Manufacturing ((STAM))

Abstract

The additive manufacturing (AM) methods are being used to develop products using metals, ceramics and polymers with techniques such as layer-by-layer construction and filament deposition. Aside from the accuracy of the specific AM techniques, the broadcast elements must be inspected in order to be enforced within the target applications. The properties such as surface roughness, porosity, residual stress, and linkage are mainly used to finalize the components developed using AM. Furthermore, significant mechanical properties such as surface roughness, microstructures, hardness, tensile energy, compressive energy, fatigue, creep, and residual strain must be investigated on printed metal parts. The parameters of the AM strategies are designed to examine their effects on mechanical properties. The relationships between the AM process, parameters, and materials are interconnected to investigate the mechanical properties of AM components. The various AM techniques for printing metal components are properly classified along with their process parameters. Furthermore, various mechanical tests for metal-based components are detailed using ASTM guidelines. Based on the findings of this study, powder bed fusion techniques are recommended for the development of metal-based components due to their favorable factors for achieving better mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abd-Elghany, K., Bourell, D.L.: Property evaluation of 304L stainless steel fabricated by selective laser melting. Rapid Prototyp. J. 18, 420–428 (2012). https://doi.org/10.1108/13552541211250418

    Article  Google Scholar 

  2. Aboulkhair, N.: Additive manufacture of an aluminium alloy: processing, microstructure, and mechanical properties, (2015)

    Google Scholar 

  3. Aboulkhair, N.T., Maskery, I., Tuck, C., Ashcroft, I., Everitt, N.M.: The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment. Mater. Sci. Eng. A 667, 139–146 (2016). https://doi.org/10.1016/j.msea.2016.04.092

    Article  Google Scholar 

  4. Aboulkhair, N.T., Simonelli, M., Parry, L., Ashcroft, I., Tuck, C., Hague, R.: 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Prog. Mater. Sci. 106, 100578 (2019). https://doi.org/10.1016/j.pmatsci.2019.100578

  5. Aboulkhair, N.T., Tuck, C., Ashcroft, I., Maskery, I., Everitt, N.M.: On the precipitation hardening of selective laser melted AlSi10Mg. Metall Mater Trans A. 46, 3337–3341 (2015). https://doi.org/10.1007/s11661-015-2980-7

    Article  Google Scholar 

  6. Ahangar, P., Cooke, M.E., Weber, M.H., Rosenzweig, D.H.: Current biomedical applications of 3D printing and additive manufacturing. Appl. Sci. 9, 1713 (2019). https://doi.org/10.3390/app9081713

    Article  Google Scholar 

  7. Ahmad, B., van der Veen, S.O., Fitzpatrick, M.E., Guo, H.: Residual stress evaluation in selective-laser-melting additively manufactured titanium (Ti-6Al-4V) and inconel 718 using the contour method and numerical simulation. Addit. Manuf. 22, 571–582 (2018). https://doi.org/10.1016/j.addma.2018.06.002

    Article  Google Scholar 

  8. Ahn, D.-G.: Direct metal additive manufacturing processes and their sustainable applications for green technology: a review. Int. J. Precis. Eng. Manuf. Green Tech. 3, 381–395 (2016). https://doi.org/10.1007/s40684-016-0048-9

  9. Ambrogio, G., Gagliardi, F., Bruschi, S., Filice, L.: On the high-speed single point incremental forming of titanium alloys. CIRP Ann. 62, 243–246 (2013). https://doi.org/10.1016/j.cirp.2013.03.053

    Article  Google Scholar 

  10. Bai, Y., Yang, Y., Wang, D., Zhang, M.: Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng. A 703, 116–123 (2017). https://doi.org/10.1016/j.msea.2017.06.033

    Article  Google Scholar 

  11. Bian, L., Thompson, S.M., Shamsaei, N.: Mechanical properties and microstructural features of direct laser-deposited Ti-6Al-4V. JOM. 67, 629–638 (2015). https://doi.org/10.1007/s11837-015-1308-9

    Article  Google Scholar 

  12. Blackwell, P.L.: The mechanical and microstructural characteristics of laser-deposited IN718. J. Mater. Process. Technol. 170, 240–246 (2005). https://doi.org/10.1016/j.jmatprotec.2005.05.005

    Article  Google Scholar 

  13. Bobbio, L., Qin, S., Dunbar, A., Michaleris, P., Beese, A.: Characterization of the strength of support structures used in powder bed fusion additive manufacturing of Ti-6Al-4V. Addit. Manuf. 14, (2017). https://doi.org/10.1016/j.addma.2017.01.002

  14. Brandl, E., Palm, F., Michailov, V., Viehweger, B., Leyens, C.: Mechanical properties of additive manufactured titanium (Ti–6Al–4V) blocks deposited by a solid-state laser and wire. Mater. Des. 32, 4665–4675 (2011). https://doi.org/10.1016/j.matdes.2011.06.062

    Article  Google Scholar 

  15. Bresser, D., Hosoi, K., Howell, D., Li, H., Zeisel, H., Amine, K., Passerini, S.: Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. J. Power Sources 382, 176–178 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.039

    Article  Google Scholar 

  16. Brice, C., Shenoy, R., Kral, M., Buchannan, K.: Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing. Mater. Sci. Eng. A 648, 9–14 (2015). https://doi.org/10.1016/j.msea.2015.08.088

    Article  Google Scholar 

  17. Buchbinder, D., Meiners, W., Pirch, N., Wissenbach, K., Schrage, J.: Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting. J. Laser Appl. 26, 012004 (2014). https://doi.org/10.2351/1.4828755

  18. Caba, S.: Aluminum alloy for additive manufacturing in automotive production. ATZ Worldw. 122, 58–61 (2020). https://doi.org/10.1007/s38311-020-0285-y

    Article  Google Scholar 

  19. Cain, V., Thijs, L., Van Humbeeck, J., Van Hooreweder, B., Knutsen, R.: Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting. Addit. Manuf. 5, 68–76 (2015). https://doi.org/10.1016/j.addma.2014.12.006

    Article  Google Scholar 

  20. Cansizoglu, O., Harrysson, O., Cormier, D., West, H., Mahale, T.: Properties of Ti-6Al-4V non-stochastic lattice structures fabricated via electron beam melting. Mater. Sci. Eng. A 492, 468–474 (2008). https://doi.org/10.1016/j.msea.2008.04.002

    Article  Google Scholar 

  21. Carlton, H.D., Haboub, A., Gallegos, G.F., Parkinson, D.Y., MacDowell, A.A.: Damage evolution and failure mechanisms in additively manufactured stainless steel. Mater. Sci. Eng., A 651, 406–414 (2016). https://doi.org/10.1016/j.msea.2015.10.073

    Article  Google Scholar 

  22. Chan, K.S., Koike, M., Mason, R.L., Okabe, T.: Fatigue life of titanium alloys fabricated by additive layer manufacturing techniques for dental implants. Metall Mater Trans A 44, 1010–1022 (2013). https://doi.org/10.1007/s11661-012-1470-4

    Article  Google Scholar 

  23. DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., Zhang, W.: Additive manufacturing of metallic components—process, structure and properties. Prog. Mater Sci. 92, 112–224 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  24. Doornewaard, R., Christiaens, V., Bruyn, H.D., Jacobsson, M., Cosyn, J., Vervaeke, S., Jacquet, W.: Long-Term effect of surface roughness and patients’ factors on crestal bone loss at dental implants. A systematic review and meta-analysis. Clin. Implant Dent. Relat Res. 19, 372–399 (2017). https://doi.org/10.1111/cid.12457

  25. Dutta, B., Froes, F.H.: (Sam): The additive manufacturing (AM) of titanium alloys. Met. Powder Rep. 72, 96–106 (2017). https://doi.org/10.1016/j.mprp.2016.12.062

    Article  Google Scholar 

  26. Edwards, P., O’Conner, A., Ramulu, M.: Electron beam additive manufacturing of titanium components: properties and performance. J. Manuf. Sci. Eng. 135, (2013). https://doi.org/10.1115/1.4025773

  27. Edwards, P., Ramulu, M.: Effect of build direction on the fracture toughness and fatigue crack growth in selective laser melted Ti-6Al-4 V. Fatigue Fract. Eng. Mater. Struct. 38, 1228–1236 (2015). https://doi.org/10.1111/ffe.12303

    Article  Google Scholar 

  28. Frazier, W.E.: Metal additive manufacturing: a review. J. Mater Eng Perform. 23, 1917–1928 (2014). https://doi.org/10.1007/s11665-014-0958-z

    Article  Google Scholar 

  29. Fulcher, B.A., Leigh, D.K., Watt, T.J.: Comparison of AlSi10Mg and Al 6061 processed through DMLS. 16

    Google Scholar 

  30. Galati, M.: Chapter 8—Electron beam melting process: a general overview. In: Pou, J., Riveiro, A., and Davim, J.P. (eds.) Additive Manufacturing, pp. 277–301. Elsevier (2021)

    Google Scholar 

  31. Gorsse, S., Hutchinson, C., Gouné, M., Banerjee, R.: Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci. Technol. Adv. Mater. 18, 584–610 (2017). https://doi.org/10.1080/14686996.2017.1361305

    Article  Google Scholar 

  32. Graf, B., Schuch, M., Petrat, T., Gumenyuk, A., Rethmeier, M.: Combined laser additive manufacturing with powderbed and powder nozzle for turbine parts. In: Presented at the Proceedings of 6th International Conference and Additive Technologies (2016)

    Google Scholar 

  33. Greitemeier, D., Palm, F., Syassen, F., Melz, T.: Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting. Int. J. Fatigue 94, 211–217 (2017). https://doi.org/10.1016/j.ijfatigue.2016.05.001

    Article  Google Scholar 

  34. Gu, D.: Materials creation adds new dimensions to 3D printing. Sci. Bull. 61, 1718–1722 (2016). https://doi.org/10.1007/s11434-016-1191-y

    Article  Google Scholar 

  35. Gu, D., Shen, Y.: Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Mater. Des. 30, 2903–2910 (2009). https://doi.org/10.1016/j.matdes.2009.01.013

    Article  Google Scholar 

  36. Haghdadi, N., Laleh, M., Moyle, M., Primig, S.: Additive manufacturing of steels: a review of achievements and challenges. J Mater Sci. 56, 64–107 (2021). https://doi.org/10.1007/s10853-020-05109-0

    Article  Google Scholar 

  37. Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C.: Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016). https://doi.org/10.1016/j.actamat.2016.07.019

    Article  Google Scholar 

  38. Hinojos, A., Mireles, J., Reichardt, A., Frigola, P., Hosemann, P., Murr, L.E., Wicker, R.B.: Joining of inconel 718 and 316 stainless steel using electron beam melting additive manufacturing technology. Mater. Des. 94, 17–27 (2016). https://doi.org/10.1016/j.matdes.2016.01.041

    Article  Google Scholar 

  39. Hrabe, N., Quinn, T.: Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), Part 2: Energy input, orientation, and location. Mater. Sci. Eng., A 573, 271–277 (2013). https://doi.org/10.1016/j.msea.2013.02.065

    Article  Google Scholar 

  40. Hunt, J.D.: Steady state columnar and equiaxed growth of dendrites and eutectic. Mater. Sci. Eng. 65, 75–83 (1984). https://doi.org/10.1016/0025-5416(84)90201-5

    Article  Google Scholar 

  41. Kannan, G.B., Rajendran, D.K.: A review on status of research in metal additive manufacturing. Adv. 3D Print. Addit. Manuf. Technol., 95–100 (2017). https://doi.org/10.1007/978-981-10-0812-2_8

  42. Kasperovich, G., Hausmann, J.: Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J. Mater. Process. Technol. 220, 202–214 (2015). https://doi.org/10.1016/j.jmatprotec.2015.01.025

    Article  Google Scholar 

  43. Ko, G., Kim, W., Kwon, K., Lee, T.-K.: The corrosion of stainless steel made by additive manufacturing: a review. Metals. 11, 516 (2021). https://doi.org/10.3390/met11030516

    Article  Google Scholar 

  44. Kruth, J., Mercelis, P., Van Vaerenbergh, J., Froyen, L., Rombouts, M.: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J. 11, 26–36 (2005). https://doi.org/10.1108/13552540510573365

    Article  Google Scholar 

  45. Kundakcıoğlu, E., Lazoglu, I., Poyraz, Ö., Yasa, E., Cizicioğlu, N.: Thermal and molten pool model in selective laser melting process of Inconel 625. Int J Adv Manuf Technol. 95, 3977–3984 (2018). https://doi.org/10.1007/s00170-017-1489-1

    Article  Google Scholar 

  46. Lesyk, D.A., Martinez, S., Mordyuk, B.N., Dzhemelinskyi, V.V., Lamikiz, A., Prokopenko, G.I.: Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress. Surf. Coat. Technol. 381, 125136 (2020). https://doi.org/10.1016/j.surfcoat.2019.125136

  47. Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H.A., Maier, H.J.: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int. J. Fatigue 48, 300–307 (2013). https://doi.org/10.1016/j.ijfatigue.2012.11.011

    Article  Google Scholar 

  48. Lewandowski, J.J., Seifi, M.: Metal additive manufacturing: a review of mechanical properties. Annu. Rev. Mater. Res. 46, 151–186 (2016). https://doi.org/10.1146/annurev-matsci-070115-032024

    Article  Google Scholar 

  49. Li, C., Liu, Z.Y., Fang, X.Y., Guo, Y.B.: Residual stress in metal additive manufacturing. Procedia CIRP. 71, 348–353 (2018). https://doi.org/10.1016/j.procir.2018.05.039

    Article  Google Scholar 

  50. Martinez, E., Murr, L.E., Amato, K.N., Hernandez, J., Shindo, P.W., Gaytan, S.M., Ramirez, D.A., Medina, F., Wicker, R.B.: 3D microstructural architectures for metal and alloy components fabricated by 3D printing/additive manufacturing technologies. In: De Graef, M., Poulsen, H.F., Lewis, A., Simmons, J., and Spanos, G. (eds.) Proceedings of the 1st International Conference on 3D Materials Science, pp. 73–78. Springer International Publishing, Cham (2016)

    Google Scholar 

  51. Mehta, A., Zhou, L., Huynh, T., Park, S., Hyer, H., Song, S., Bai, Y., Imholte, D.D., Woolstenhulme, N.E., Wachs, D.M., Sohn, Y.: Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the laser-powder bed fusion. Addit. Manuf. 41, 101966 (2021). https://doi.org/10.1016/j.addma.2021.101966

  52. Mirzababaei, S., Pasebani, S.: A review on binder jet additive manufacturing of 316L stainless steel. J. Manuf. Mater. Process. 3, 82 (2019). https://doi.org/10.3390/jmmp3030082

    Article  Google Scholar 

  53. Monteiro, W.A.: Light Metal Alloys Applications. BoD—Books on Demand (2014)

    Google Scholar 

  54. Monzón, M.D., Ortega, Z., Martínez, A., Ortega, F.: Standardization in additive manufacturing: activities carried out by international organizations and projects. Int J Adv Manuf Technol. 76, 1111–1121 (2015). https://doi.org/10.1007/s00170-014-6334-1

    Article  Google Scholar 

  55. Morrow, B.M., Lienert, T.J., Knapp, C.M., Sutton, J.O., Brand, M.J., Pacheco, R.M., Livescu, V., Carpenter, J.S., Gray, G.T.: Impact of defects in powder feedstock materials on microstructure of 304L and 316L stainless steel produced by additive manufacturing. Metall Mat Trans A. 49, 3637–3650 (2018). https://doi.org/10.1007/s11661-018-4661-9

    Article  Google Scholar 

  56. Mumtaz, K., Hopkinson, N.: Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyp. J. 15, 96–103 (2009). https://doi.org/10.1108/13552540910943397

    Article  Google Scholar 

  57. Murr, L.E.: Metallurgy of additive manufacturing: examples from electron beam melting. Addit. Manuf. 5, 40–53 (2015). https://doi.org/10.1016/j.addma.2014.12.002

    Article  Google Scholar 

  58. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q., Hui, D.: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. B Eng. 143, 172–196 (2018). https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  59. Patterson, A.E., Messimer, S.L., Farrington, P.A.: Overhanging features and the SLM/DMLS residual stresses problem: review and future research need. Technologies. 5, 15 (2017). https://doi.org/10.3390/technologies5020015

    Article  Google Scholar 

  60. Phan, T.Q., Strantza, M., Hill, M.R., Gnaupel-Herold, T.H., Heigel, J., D’Elia, C.R., DeWald, A.T., Clausen, B., Pagan, D.C., Peter Ko, J.Y., Brown, D.W., Levine, L.E.: Elastic residual strain and stress measurements and corresponding part deflections of 3D additive manufacturing builds of IN625 AM-bench artifacts using neutron diffraction, synchrotron X-Ray diffraction, and contour method. Integr Mater Manuf Innov. 8, 318–334 (2019). https://doi.org/10.1007/s40192-019-00149-0

    Article  Google Scholar 

  61. Pollack, S., Venkatesh, C., Neff, M., Healy, A.V., Hu, G., Fuenmayor, E.A., Lyons, J.G., Major, I., Devine, D.M.: Polymer-Based additive manufacturing: historical developments, process types and material considerations. In: Devine, D.M. (ed.) Polymer-Based Additive Manufacturing: Biomedical Applications, pp. 1–22. Springer International Publishing, Cham (2019)

    Google Scholar 

  62. Popov, V.V., Fleisher, A.: Hybrid additive manufacturing of steels and alloys. Manuf. Rev. 7, 6 (2020). https://doi.org/10.1051/mfreview/2020005

    Article  Google Scholar 

  63. Prakash, K.S., Nancharaih, T., Rao, V.V.S.: Additive manufacturing techniques in manufacturing—an overview. Materials Today: Proceedings. 5, 3873–3882 (2018). https://doi.org/10.1016/j.matpr.2017.11.642

    Article  Google Scholar 

  64. Prashanth, K.G., Scudino, S., Klauss, H.J., Surreddi, K.B., Löber, L., Wang, Z., Chaubey, A.K., Kühn, U., Eckert, J.: Microstructure and mechanical properties of Al–12Si produced by selective laser melting: effect of heat treatment. Mater. Sci. Eng. A 590, 153–160 (2014). https://doi.org/10.1016/j.msea.2013.10.023

    Article  Google Scholar 

  65. Qiu, C., Adkins, N.J.E., Attallah, M.M.: Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V. Mater. Sci. Eng. A 578, 230–239 (2013). https://doi.org/10.1016/j.msea.2013.04.099

    Article  Google Scholar 

  66. Qiu, C., Panwisawas, C., Ward, M., Basoalto, H.C., Brooks, J.W., Attallah, M.M.: On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater. 96, 72–79 (2015). https://doi.org/10.1016/j.actamat.2015.06.004

    Article  Google Scholar 

  67. Rahmati, S., Vahabli, E.: Evaluation of analytical modeling for improvement of surface roughness of FDM test part using measurement results. Int J Adv Manuf Technol. 79, 823–829 (2015). https://doi.org/10.1007/s00170-015-6879-7

    Article  Google Scholar 

  68. Reeves, P., Tuck, C., Hague, R.: Additive manufacturing for mass customization. In: Fogliatto, F.S., da Silveira, G.J.C. (eds.) Mass Customization: Engineering and Managing Global Operations, pp. 275–289. Springer, London (2011)

    Chapter  Google Scholar 

  69. Revilla-León, M., Ceballos, L., Martínez-Klemm, I., Özcan, M.: Discrepancy of complete-arch titanium frameworks manufactured using selective laser melting and electron beam melting additive manufacturing technologies. J. Prosthet. Dent. 120, 942–947 (2018). https://doi.org/10.1016/j.prosdent.2018.02.010

    Article  Google Scholar 

  70. Rickenbacher, L., Etter, T., Hövel, S., Wegener, K.: High temperature material properties of IN738LC processed by selective laser melting (SLM) technology. Rapid Prototyp. J. 19, 282–290 (2013). https://doi.org/10.1108/13552541311323281

    Article  Google Scholar 

  71. Riemer, A., Leuders, S., Thöne, M., Richard, H.A., Tröster, T., Niendorf, T.: On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Eng. Fract. Mech. 120, 15–25 (2014). https://doi.org/10.1016/j.engfracmech.2014.03.008

    Article  Google Scholar 

  72. Saeidi, K., Zapata, D.L., Lofaj, F., Kvetkova, L., Olsen, J., Shen, Z., Akhtar, F.: Ultra-high strength martensitic 420 stainless steel with high ductility. Addit. Manuf. 29, 100803 (2019). https://doi.org/10.1016/j.addma.2019.100803

  73. Salem, M., Le Roux, S., Hor, A., Dour, G.: A new insight on the analysis of residual stresses related distortions in selective laser melting of Ti-6Al-4V using the improved bridge curvature method. Addit. Manuf. 36, 101586 (2020). https://doi.org/10.1016/j.addma.2020.101586

  74. Sames, W.J., Unocic, K.A., Dehoff, R.R., Lolla, T., Babu, S.S.: Thermal effects on microstructural heterogeneity of Inconel 718 materials fabricated by electron beam melting. J. Mater. Res. 29, 1920–1930 (2014). https://doi.org/10.1557/jmr.2014.140

    Article  Google Scholar 

  75. Schmidtke, K., Palm, F., Hawkins, A., Emmelmann, C.: Process and Mechanical Properties: applicability of a scandium modified Al-alloy for laser additive manufacturing. Phys. Procedia 12, 369–374 (2011). https://doi.org/10.1016/j.phpro.2011.03.047

    Article  Google Scholar 

  76. Scott, J., Gupta, N., Weber, C., Newsome, S., Wohlers, T., Associates, W., Caffrey, T., Associates, W.: Additive Manufacturing: Status and Opportunities. 36

    Google Scholar 

  77. Seifi, M., Dahar, M., Aman, R., Harrysson, O., Beuth, J., Lewandowski, J.J.: Evaluation of orientation dependence of fracture toughness and fatigue crack propagation behavior of as-deposited ARCAM EBM Ti-6Al-4V. JOM. 67, 597–607 (2015). https://doi.org/10.1007/s11837-015-1298-7

    Article  Google Scholar 

  78. Seifi, M., Salem, A., Beuth, J., Harrysson, O., Lewandowski, J.J.: Overview of materials qualification needs for metal additive manufacturing. JOM. 68, 747–764 (2016). https://doi.org/10.1007/s11837-015-1810-0

    Article  Google Scholar 

  79. Selcuk, C.: Laser metal deposition for powder metallurgy parts. Powder Metall. 54, 94–99 (2011). https://doi.org/10.1179/174329011X12977874589924

    Article  Google Scholar 

  80. Sert, E., Hitzler, L., Hafenstein, S., Merkel, M., Werner, E., Öchsner, A.: Tensile and compressive behaviour of additively manufactured AlSi10Mg samples. Prog Addit Manuf. 5, 305–313 (2020). https://doi.org/10.1007/s40964-020-00131-9

    Article  Google Scholar 

  81. Siddique, S., Imran, M., Wycisk, E., Emmelmann, C., Walther, F.: Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting. J. Mater. Process. Technol. 221, 205–213 (2015). https://doi.org/10.1016/j.jmatprotec.2015.02.023

    Article  Google Scholar 

  82. Slotwinski, J., Moylan, S.: Applicability of existing materials testing standards for additive manufacturing materials. 17, (2014)

    Google Scholar 

  83. Spears, T.G., Gold, S.A.: In-process sensing in selective laser melting (SLM) additive manufacturing. Integr Mater Manuf Innov. 5, 16–40 (2016). https://doi.org/10.1186/s40192-016-0045-4

    Article  Google Scholar 

  84. Suave, L.M., Bertheau, D., Cormier, J., Villechaise, P., Soula, A., Hervier, Z., Laigo, J.: Impact of microstructural evolutions during thermal aging of Alloy 625 on its monotonic mechanical properties. MATEC Web of Conferences. 14, 21001 (2014). https://doi.org/10.1051/matecconf/20141421001

    Article  Google Scholar 

  85. Sun, S.-H., Koizumi, Y., Kurosu, S., Li, Y.-P., Chiba, A.: Phase and grain size inhomogeneity and their influences on creep behavior of Co–Cr–Mo alloy additive manufactured by electron beam melting. Acta Mater. 86, 305–318 (2015). https://doi.org/10.1016/j.actamat.2014.11.012

    Article  Google Scholar 

  86. Sun, S.-H., Koizumi, Y., Kurosu, S., Li, Y.-P., Matsumoto, H., Chiba, A.: Build direction dependence of microstructure and high-temperature tensile property of Co–Cr–Mo alloy fabricated by electron beam melting. Acta Mater. 64, 154–168 (2014). https://doi.org/10.1016/j.actamat.2013.10.017

    Article  Google Scholar 

  87. Suryawanshi, J., Prashanth, K.G., Scudino, S., Eckert, J., Prakash, O., Ramamurty, U.: Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Mater. 115, 285–294 (2016). https://doi.org/10.1016/j.actamat.2016.06.009

    Article  Google Scholar 

  88. Tan, X., Kok, Y., Tan, Y.J., Descoins, M., Mangelinck, D., Tor, S.B., Leong, K.F., Chua, C.K.: Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting. Acta Mater. 97, 1–16 (2015). https://doi.org/10.1016/j.actamat.2015.06.036

    Article  Google Scholar 

  89. Tang, Z.-J., Liu, W., Wang, Y., Saleheen, K., Liu, Z.-C., Peng, S.-T., Zhang, Z., Zhang, H.-C.: A review on in situ monitoring technology for directed energy deposition of metals. Int. J. Adv. Manuf. Technol. 108, (2020). https://doi.org/10.1007/s00170-020-05569-3

  90. Tapia, G., Elwany, A.: A review on process monitoring and control in metal-based additive manufacturing. J. Manuf. Sci Eng. 136, 060801 (2014). https://doi.org/10.1115/1.4028540

  91. Thijs, L., Montero Sistiaga, M.L., Wauthle, R., Xie, Q., Kruth, J.-P., Van Humbeeck, J.: Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum. Acta Mater. 61, 4657–4668 (2013). https://doi.org/10.1016/j.actamat.2013.04.036

    Article  Google Scholar 

  92. Tofail, S.A.M., Koumoulos, E.P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., Charitidis, C.: Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater. Today 21, 22–37 (2018). https://doi.org/10.1016/j.mattod.2017.07.001

    Article  Google Scholar 

  93. Trevisan, F., Calignano, F., Aversa, A., Marchese, G., Lombardi, M., Biamino, S., Ugues, D., Manfredi, D.: Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. J Appl. Biomater. Funct. Mater. 16, 57–67 (2018). https://doi.org/10.5301/jabfm.5000371

    Article  Google Scholar 

  94. Vilardell, A.M., Yadroitsev, I., Yadroitsava, I., Albu, M., Takata, N., Kobashi, M., Krakhmalev, P., Kouprianoff, D., Kothleitner, G., Plessis, A. du: Manufacturing and characterization of in-situ alloyed Ti6Al4V(ELI)-3 at.% Cu by laser powder bed fusion. Addit. Manuf. 36, 101436 (2020). https://doi.org/10.1016/j.addma.2020.101436

  95. Vilaro, T., Colin, C., Bartout, J.D.: As-Fabricated and heat-treated microstructures of the Ti-6Al-4V Alloy processed by selective laser melting. Metall Mater Trans A 42, 3190–3199 (2011). https://doi.org/10.1007/s11661-011-0731-y

    Article  Google Scholar 

  96. Wang, J.F., Sun, Q.J., Wang, H., Liu, J.P., Feng, J.C.: Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding. Mater. Sci. Eng. A 676, 395–405 (2016). https://doi.org/10.1016/j.msea.2016.09.015

  97. Wang, P., Tan, X., Nai, M.L.S., Tor, S.B., Wei, J.: Spatial and geometrical-based characterization of microstructure and microhardness for an electron beam melted Ti-6Al-4V component. Mater. Design. 95, 287–295 (2016). https://doi.org/10.1016/j.matdes.2016.01.093

  98. Wei, H., Wang, L., Niu, X., Zhang, J., Simeone, A.: Fabrication, experiments, and analysis of an LBM additive-manufactured flexure parallel mechanism. Micromachines 9, 572 (2018). https://doi.org/10.3390/mi9110572

    Article  Google Scholar 

  99. Weingarten, C., Buchbinder, D., Pirch, N., Meiners, W., Wissenbach, K., Poprawe, R.: Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. J. Mater. Process. Technol. 221, 112–120 (2015). https://doi.org/10.1016/j.jmatprotec.2015.02.013

    Article  Google Scholar 

  100. Xiao, Z., Chen, C., Zhu, H., Hu, Z., Nagarajan, B., Guo, L., Zeng, X.: Study of residual stress in selective laser melting of Ti6Al4V. Mater Design. 193, 108846 (2020). https://doi.org/10.1016/j.matdes.2020.108846

  101. Yadollahi, A., Shamsaei, N.: Additive manufacturing of fatigue resistant materials: challenges and opportunities. Int. J. Fatigue 98, 14–31 (2017). https://doi.org/10.1016/j.ijfatigue.2017.01.001

    Article  Google Scholar 

  102. Yadollahi, A., Shamsaei, N., Thompson, S.M., Seely, D.W.: Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater. Sci. Eng. A 644, 171–183 (2015). https://doi.org/10.1016/j.msea.2015.07.056

    Article  Google Scholar 

  103. Yamanaka, K., Saito, W., Mori, M., Matsumoto, H., Chiba, A.: Preparation of weak-textured commercially pure titanium by electron beam melting. Addit. Manuf. 8, 105–109 (2015). https://doi.org/10.1016/j.addma.2015.09.007

    Article  Google Scholar 

  104. Yan, L., Chen, Y., Liou, F.: Additive manufacturing of functionally graded metallic materials using laser metal deposition. Addit. Manuf. 31, 100901 (2020). https://doi.org/10.1016/j.addma.2019.100901

  105. Yang, T., Liu, T., Liao, W., Wei, H., Zhang, C., Chen, X., Zhang, K.: Effect of processing parameters on overhanging surface roughness during laser powder bed fusion of AlSi10Mg. J. Manuf. Process. 61, 440–453 (2021). https://doi.org/10.1016/j.jmapro.2020.11.030

    Article  Google Scholar 

  106. Yasa, E., Kempen, K., Kruth, J., Thijs, L., Van Humbeeck, J.: Microstructure and mechanical properties of maraging steel 300 after selective laser melting. In: Solid freeform fabrication symposium proceedings, pp. 383–396 (2010)

    Google Scholar 

  107. Yin, J., Yang, L., Yang, X., Zhu, H., Wang, D., Ke, L., Wang, Z., Wang, G., Zeng, X.: High-power laser-matter interaction during laser powder bed fusion. Addit. Manuf. 29, 100778 (2019). https://doi.org/10.1016/j.addma.2019.100778

  108. Zadi-Maad, A., Rohib, R., Irawan, A.: Additive manufacturing for steels: a review. IOP Conf. Ser.: Mater. Sci. Eng. 285, 012028 (2018). https://doi.org/10.1088/1757-899X/285/1/012028

  109. Zakirov, A., Belousov, S., Bogdanova, M., Korneev, B., Stepanov, A., Perepelkina, A., Levchenko, V., Meshkov, A., Potapkin, B.: Predictive modeling of laser and electron beam powder bed fusion additive manufacturing of metals at the mesoscale. Addit. Manuf. 35, 101236 (2020). https://doi.org/10.1016/j.addma.2020.101236

  110. Zhai, Y., Galarraga, H., Lados, D.A.: Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti-6Al-4V alloys fabricated by two additive manufacturing techniques. Procedia Eng. 114, 658–666 (2015). https://doi.org/10.1016/j.proeng.2015.08.007

    Article  Google Scholar 

  111. Zhai, Y., Galarraga, H., Lados, D.A.: Microstructure, static properties, and fatigue crack growth mechanisms in Ti-6Al-4V fabricated by additive manufacturing: LENS and EBM. Eng. Fail. Anal. 69, 3–14 (2016). https://doi.org/10.1016/j.engfailanal.2016.05.036

    Article  Google Scholar 

  112. Zhang, Y., Wu, L., Guo, X., Kane, S., Deng, Y., Jung, Y.-G., Lee, J.-H., Zhang, J.: Additive manufacturing of metallic materials: a review. J. Materi Eng Perform. 27, 1–13 (2018). https://doi.org/10.1007/s11665-017-2747-y

    Article  Google Scholar 

  113. Zheng, L., Liu, Y., Sun, S., Zhang, H.: Selective laser melting of Al–8.5Fe–1.3V–1.7Si alloy: investigation on the resultant microstructure and hardness. Chinese J Aeronaut. 28, 564–569 (2015). https://doi.org/10.1016/j.cja.2015.01.013

  114. Ziętala, M., Durejko, T., Polański, M., Kunce, I., Płociński, T., Zieliński, W., Łazińska, M., Stępniowski, W., Czujko, T., Kurzydłowski, K.J., Bojar, Z.: The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping. Mater. Sci. Eng. A 677, 1–10 (2016). https://doi.org/10.1016/j.msea.2016.09.028

    Article  Google Scholar 

  115. Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting. Procedia Eng.. 19, 389–395 (2011). https://doi.org/10.1016/j.proeng.2011.11.130

  116. Effects of defects in laser additive manufactured Ti-6Al-4V on fatigue properties. Phys. Procedia. 56, 371–378 (2014). https://doi.org/10.1016/j.phpro.2014.08.120

  117. Additive Manufacturing of Titanium Alloy for Aircraft Components: Procedia CIRP. 35, 55–60 (2015). https://doi.org/10.1016/j.procir.2015.08.061

    Article  Google Scholar 

  118. Metal powders—the raw materials, https://www.metal-am.com/introduction-to-metal-additive-manufacturing-and-3d-printing/metal-powders-the-raw-materials/

  119. Standards for metal Additive Manufacturing: A global perspective, https://www.metal-am.com/articles/standards-for-metal-3d-printing-a-global-perspective/

  120. Electronic Beam Melting, https://www.whiteclouds.com/3dpedia/ebm.html

  121. ARTICLE: Additive Manufacturing of Aluminum Alloys—Light Metal Age Magazine, https://www.lightmetalage.com/news/industry-news/3d-printing/article-additive-manufacturing-of-aluminum-alloys/

  122. Additive manufacturing: technology, applications and research needs|SpringerLink, https://link.springer.com/article/10.1007%2Fs11465-013-0248-8

  123. A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing | J. Manuf. Sci. Eng. | ASME Digital Collection, https://asmedigitalcollection.asme.org/manufacturingscience/article-abstract/136/6/060801/377521/A-Review-on-Process-Monitoring-and-Control-in

  124. Using machine learning to aid in the parameter optimisation process for metal-based additive manufacturing | Emerald Insight, https://doi.org/10.1108/RPJ-08-2019-0213/full/html

  125. 3D printing: a critical review of current development and future prospects | Emerald Insight, https://doi.org/10.1108/RPJ-11-2018-0293/full/html

  126. Advanced Machining Processes—Prof. Vijay Kumar Jain—Google Books, https://books.google.co.in/books?hl=en&lr=&id=ufyiV6nEyd4C&oi=fnd&pg=PR9&dq=LBM,+EBM,+and+LMD+advantage+and+disadvantages&ots=vQD071htns&sig=cQAT0zIPygNPIMuEOw7NLnQokRs&redir_esc=y#v=onepage&q&f=false

  127. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448875/

  128. Electron Beam Melting—an overview | ScienceDirect Topics, https://www.sciencedirect.com/topics/chemistry/electron-beam-melting

  129. Tensile Testing for 3D Printing Materials, https://www.protolabs.com/resources/blog/tensile-testing-for-3d-printing-materials/

  130. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance—ScienceDirect, https://www.sciencedirect.com/science/article/abs/pii/S014211231200343X

  131. Process optimization, microstructures and mechanical properties of a Cu-based shape memory alloy fabricated by selective laser melting—ScienceDirect, https://www.sciencedirect.com/science/article/abs/pii/S0925838819301616

  132. ARTICLE: Additive Manufacturing of Aluminum Alloys

    Google Scholar 

  133. Tensile Testing for 3D Printing Materials

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Velmurugan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akilan, I., Velmurugan, C. (2022). Mechanical Testing of Additive Manufacturing Materials. In: Khan, M.A., Jappes, J.T.W. (eds) Innovations in Additive Manufacturing. Springer Tracts in Additive Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-89401-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89401-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89400-9

  • Online ISBN: 978-3-030-89401-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics