Skip to main content

Assessing the Support for Creativity of a Playground for Live Coding Machine Learning

  • 934 Accesses

Part of the Lecture Notes in Computer Science book series (LNISA,volume 13056)

Abstract

We present the ongoing research around the design of Sema, a live coding environment aimed at supporting live coding with machine learning in the modern web browser. Sema integrates custom dashboards with code editors, debugging and visualisation tools, reference documentation and interactive tutorials. We analyse survey findings applying the Creativity Support Index, which aimed at understanding how well Sema supports creativity across its subsystems, and discuss how the insights we obtained contributed to inform the following design iteration.

Keywords

  • Live coding
  • Sound
  • Music & performance
  • Machine learning
  • Creativity support tools

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-89394-1_38
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-89394-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.

Notes

  1. 1.

    Sema: Live Coding With Machine Learning Workshop http://www.emutelab.org/blog/semaworkshop.

References

  1. Bernardo, F., Kiefer, C., Magnusson, T.: A signal engine for a live coding language ecosystem. J. Audio Eng. Soc. 68(10), 756–766 (2020)

    CrossRef  Google Scholar 

  2. Bernardo, F., Kiefer, C., Magnusson, T.: Designing for a pluralist and user-friendly live code language ecosystem with sema. In: Proceedings of International Conference on Live Coding, pp. 41–57 (2020)

    Google Scholar 

  3. Bergmann, J., Sams, A.: Flip your classroom: reach every student in every class every day, pp. 120–190, Washington DC. International Society for Technology in Education (2012)

    Google Scholar 

  4. Carroll, E., Latulipe, C.: Quantifying the creativity support of digital tools through the creativity support index. ACM Trans. Comput. Hum. Interact. 21(4), Article 21, 25 (2014). https://doi.org/10.1145/2617588

  5. McCartney, J.: Rethinking the computer music language: SuperCollider. Comput. Music J. 26, 61–68 (2002). https://doi.org/10.1162/014892602320991383

    CrossRef  Google Scholar 

  6. McLean, A.: Making programming languages to dance to: live coding with tidal. In: Proceedings of the First ACM SIGPLAN Workshop on Functional Art, Music, Modeling - FARM 2014, pp. 63–70 (2014). https://doi.org/10.1145/2633638.2633647

  7. Magnusson, T.: Herding cats: observing live coding in the wild. Comput. Music J. 38, 91–101 (2014). https://doi.org/10.1162/COMJ

    CrossRef  Google Scholar 

  8. Roberts, C., Kuchera-Morin, J.A: Gibber: Live coding audio in the browser. Proc. Int. Comput. Music Conf. 2012, 64–69 (2012)

    Google Scholar 

  9. Shneiderman, B.: Creativity support tools: accelerating discovery and innovation. Commun. ACM 50(12), 20–32 (2007)

    CrossRef  Google Scholar 

  10. Roberts, A., Hawthorne, C., Simon, I.: Magenta.js: a JavaScript API for augmenting creativity with deep learning. In: Proceedings of the 35th Joint Workshop on Machine Learning for Music (ICML) (2018)

    Google Scholar 

  11. Smilkov, D., et al.: TensorFlow.js: machine learning for the web and beyond. In: Proceedings of the 2nd SysML Conference (2019)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the workshop participants and our MIMIC project colleagues. This work was supported by two UKRI/AHRC grants: MIMIC-Musically Intelligent Machines Interacting Creatively (ref: AH/R002657/1)-and Innovating Sema-Community-building of Live Coding Language Design and Perfor mance with Machine Learning (ref: AH/V005154/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Bernardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Bernardo, F., Kiefer, C., Magnusson, T. (2021). Assessing the Support for Creativity of a Playground for Live Coding Machine Learning. In: Baalsrud Hauge, J., C. S. Cardoso, J., Roque, L., Gonzalez-Calero, P.A. (eds) Entertainment Computing – ICEC 2021. ICEC 2021. Lecture Notes in Computer Science(), vol 13056. Springer, Cham. https://doi.org/10.1007/978-3-030-89394-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89394-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89393-4

  • Online ISBN: 978-3-030-89394-1

  • eBook Packages: Computer ScienceComputer Science (R0)