Skip to main content

A VR-Based Serious Game Associated to EMG Signal Processing and Sensory Feedback for Upper Limb Prosthesis Training

  • Conference paper
  • First Online:
Entertainment Computing – ICEC 2021 (ICEC 2021)

Abstract

Using Serious Games (SG) in virtual rehabilitation is favorable since it allows users to evolve in their training process, while enjoying the tasks and challenges proposed. In this paper, the authors present a pilot test that uses an immersive Virtual Reality (iVR)-based Serious Game to simulate a myoelectric prosthesis, which is controlled by EMG signal processing (muscle activity reading). EMG signals, as in real life, control the opening and closing of the virtual prosthesis, and vibrational elements placed on the user’s forearm provide sensory feedback to enhance the feeling of touching. Evidence presented in this work shows that users utilizing tactile feedback demonstrated improved performance and the Serious Game helped to accomplish the training tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Global Lower Extremity Amputation Study Group Unwin N.: Epidemiology of lower extremity amputation in centers in Europe, North America and East Asia. J. Br. Surg. 87(3), 328–37 (2000)

    Google Scholar 

  2. Mattioli, F.E.R., Lamounier, E.A., Cardoso, A., Soares, A.B., Andrade, A.O.: Classification of EMG signals using artificial neural networks for virtual hand prosthesis control. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 7254–7257 (2011)

    Google Scholar 

  3. Putrino, D., Wong, Y.T., Weiss, A., Pesaran, B.: A training platform for many-dimensional prosthetic devices using a virtual reality environment. J. Neurosci. Meth. 244, 68–77 (2015)

    Article  Google Scholar 

  4. Li, K., Boyd, P., Zhou, Y., Ju, Z., Liu, H.: Electrotactile feedback in a virtual hand rehabilitation platform: evaluation and implementation. IEEE Trans. Autom. Sci. Eng. 16(4), 1556–1565 (2019)

    Article  Google Scholar 

  5. Sharma, A., et al.: A mixed-reality training environment for upper limb prosthesis control. In: 2018 IEEE Biomedical Circuits and Systems Conference Proceedings, pp. 1–4, IEEE. Cleveland, Ohio, USA (2018)

    Google Scholar 

  6. De Gloria, A., Bellotti, F., Berta, R.: Serious games for education and training. Int. J. Ser. Games 1(1), (2014)

    Google Scholar 

  7. Sekhavat, Y.A., Nomani, P.: A comparison of active and passive virtual reality exposure scenarios to elicit social anxiety. Int. J. Serious Games, 4(2), 3–15 (2017)

    Google Scholar 

  8. Garcia-Agundez, A., et al.: PDPuzzleTable: a leap motion exergame for dual-tasking rehabilitation in parkinson’s disease. design and study protocol. In: van der Spek, E., Göbel, S., Do, E.-L., Clua, E., Baalsrud Hauge, J. (eds.) ICEC-JCSG 2019. LNCS, vol. 11863, pp. 402–406. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34644-7_35

    Chapter  Google Scholar 

  9. Mitgutsch, N., Alvarado, K.: Purposeful by design: a serious game design assessment framework. In: International Conference on the Foundations of Digital Games Proceedings, pp. 121– 128. ACM (2012)

    Google Scholar 

  10. Kuttuva, M., Burdea, G., Flint, J., Craelius, W.: Manipulation practice for upper-limb amputees using virtual reality. Presence: Teleoper. Virt. Environ. 14(2), 175–182 (2005)

    Google Scholar 

  11. Melero, M., et al.: Upbeat: augmented reality-guided dancing for prosthetic rehabilitation of upper limb amputees. J. Healthcare Eng. (2019)

    Google Scholar 

  12. Churko, J.M., Mehr, A., Linassi, A.G., Dinh, A.: Sensor evaluation for tracking upper extremity prosthesis movements in a virtual environment. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society Proceedings. IEEE (2009)

    Google Scholar 

  13. Atzori, M., et al.: Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci. data 1(1), 1–13 (2014)

    Article  Google Scholar 

  14. Blana, D., Kyriacou, T., Lambrecht, J.M., Chadwick, E.K.: Feasibility of using combined EMG and kinematic signals for prosthesis control: a simulation study using a virtual reality environment. J. Electromyogr. Kinesiol. 29, 21–27 (2016)

    Article  Google Scholar 

  15. Odette, K., Fu, Q.: A physics-based virtual reality environment to quantify functional performance of upper-limb prostheses. In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society Proceedings, pp. 3807–3810 (2019)

    Google Scholar 

  16. Phelan, I., Arden, M., Garcia, C., Roast, C.: Exploring virtual reality and prosthetic training. In: IEEE Virtual Reality, pp. 353–354. IEEE (2015)

    Google Scholar 

  17. Shibanoki, T., Nakamura, G., Tsuji, T., Hashimoto, K., Chin, T.: A new approach for training on EMG-based prosthetic hand control. In: 2nd Global Conference on Life Sciences and Technologies Proceedings, pp. 307–308. IEEE (2020)

    Google Scholar 

  18. Earley, E.J., Kaveny, K.J., Johnson, R.E., Hargrove, L.J., Sensinger, J.W.: Joint-based velocity feedback to virtual limb dynamic perturbations. In: 2017 International Conference on Rehabilitation Robotics, pp. 1313–1318. IEEE (2017)

    Google Scholar 

  19. Johansen, D., et al.: A comparative study of virtual hand prosthesis control using an inductive tongue control system. Assist. Technol. 28(1), 22–29 (2016)

    Google Scholar 

  20. Lamounier, E., Lopes, K., Cardoso, A., Andrade, A., Soares, A.: On the use of Virtual and augmented reality for upper limb prostheses training and simulation. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, pp. 2451–2454 (2010)

    Google Scholar 

  21. Johnson-Glenberg, M.C.: Immersive VR and education: embodied design principles that include gesture and hand controls. Front. Robot. AI 5, 81 (2018)

    Article  Google Scholar 

  22. Burke, J.W., McNeill, M.D.J., Charles, D.K., Morrow, P.J., Crosbie, J.H., McDonough, S.M.: Optimising engagement for stroke rehabilitation using serious games. Vis. Comput. 25(12), 1085–1099 (2009)

    Article  Google Scholar 

  23. Figueiredo, S.: Nine Hole Peg Test (NHPT). Stroke Engine

    Google Scholar 

  24. Kyberd, P., Hussaini, A., Maillet, G.: Characterisation of the clothespin relocation test as a functional assessment tool. J. Rehab. Assistive Technol. Eng. 5, 2055668317750810 (2018)

    Google Scholar 

  25. Alves, T., Gama, S., Melo, F.S.: Flow adaptation in serious games for health. In: 6th International Conference on Serious Games and Applications for Health Proceedings. IEEE (2018)

    Google Scholar 

  26. Cavalcante, R., Lamounier, E., Cardoso, A., Soares, A., de Lima, G.M.: Development of a serious game for rehabilitation of upper limb amputees. In 2018 20th Symposium on Virtual and Augmented Reality (SVR), pp. 99–105. IEEE, October 2018

    Google Scholar 

  27. Luo, T., Cai, N., Li, Z., Pan, Z., Yuan, Q.: VR-DLR: a serious game of somatosensory driving applied to limb rehabilitation training. In: Nunes, N.J., Ma, L., Wang, M., Correia, N., Pan, Z. (eds.) ICEC 2020. LNCS, vol. 12523, pp. 51–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65736-9_4

    Chapter  Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, Autodesk Foundation and Qatar University under the grant IRCC-2019–001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgard Lamounier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cavalcante, R., Gaballa, A., Cabibihan, JJ., Soares, A., Lamounier, E. (2021). A VR-Based Serious Game Associated to EMG Signal Processing and Sensory Feedback for Upper Limb Prosthesis Training. In: Baalsrud Hauge, J., C. S. Cardoso, J., Roque, L., Gonzalez-Calero, P.A. (eds) Entertainment Computing – ICEC 2021. ICEC 2021. Lecture Notes in Computer Science(), vol 13056. Springer, Cham. https://doi.org/10.1007/978-3-030-89394-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89394-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89393-4

  • Online ISBN: 978-3-030-89394-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics