Skip to main content

Oxidative Stress in Men with Obesity, Metabolic Syndrome and Type 2 Diabetes Mellitus: Mechanisms and Management of Reproductive Dysfunction

  • Chapter
  • First Online:
Oxidative Stress and Toxicity in Reproductive Biology and Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1358))

Abstract

Reactive oxygen species (ROS) are critical physiological mediators of cellular function, including male fertility. When ROS exceed antioxidant regulation, oxidative stress occurs which is detrimental to cellular function. Oxidative stress has been found to be a central mediator of obesity, metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM), as well as with male infertility. Human studies have correlated testicular oxidative stress in obese males, and animal studies have further provided insight into potential mechanisms of action. Management of oxidative stress is not well defined. Appropriate nutrition and exercise can be recommended for all diabetic patients, and weight loss for obese patients with MetS and T2DM. Consideration of dietary supplements including micronutrients, antioxidants or medicinal herbs are recommended. Metformin may also offer benefits on testicular oxidative stress and fertility parameters. Significantly more research on causation, mechanisms, clinical assessments and appropriate management of infertility on obesity, MetS and T2DM is still required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tafuri S, Ciani F, Iorio EL, Esposito L, Cocchia N. Reactive Oxygen Species (ROS) and male fertility. In: New discoveries in embryology. InTech; 2015. p. 19–40.

    Google Scholar 

  2. Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017;11:613–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Höhn A, Weber D, Jung T, et al. Happily (n)ever after: aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 2017;11:482–501.

    Article  PubMed  CAS  Google Scholar 

  4. Leisegang K. Malnutrition and obesity. In: Oxidants, antioxidants and impact of the oxidative status in male reproduction. Elsevier; 2019. p. 117–34.

    Chapter  Google Scholar 

  5. Leisegang K, Henkel R, Agarwal A. Redox regulation of fertility in aging male and the role of antioxidants: a savior or stressor. Curr Pharm Des. 2016;23(30):2017–8.

    Google Scholar 

  6. Leisegang K, Henkel R. Oxidative stress: relevance, evaluation, and management. In: Male infertility in reproductive medicine. CRC Press; 2019. p. 119–28.

    Chapter  Google Scholar 

  7. Dulloo AG, Jacquet J, Solinas G, Montani J-P, Schutz Y. Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J Obes. 2010;34(Suppl 2):S4–17.

    Article  Google Scholar 

  8. Haslam DW, James WPT. Obesity. Lancet. 2005;366(9492):1197–209.

    Article  PubMed  Google Scholar 

  9. Engin A. The definition and prevalence of obesity and metabolic syndrome. Adv Exp Med Biol. 2017;960:1–17.

    Article  CAS  PubMed  Google Scholar 

  10. Alberti KGMM, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and Blood Institute; American Heart Association; World Heart Federation; International Association for the Study of Obesity. Circulation. 2009;120(16):1640–50.

    Article  CAS  PubMed  Google Scholar 

  11. Huang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech. 2009;2(5–6):231–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus – present and future perspectives. Nat Rev Endocrinol. 2012;8(4):228–36.

    Article  CAS  Google Scholar 

  13. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2)

    Google Scholar 

  14. Han TS, Lean ME. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc Dis. 2016;5:204800401663337.

    Article  Google Scholar 

  15. Kumar Khemka V, Banerjee A. Metabolic risk factors in obesity and diabetes mellitus: implications in the pathogenesis and therapy. Integr Obes Diabetes. 2017;3(3)

    Google Scholar 

  16. Apovian CM. Obesity: definition, comorbidities, causes, and burden. Am J Manag Care. 2016;22(7):s176–85.

    PubMed  Google Scholar 

  17. Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10.

    Article  CAS  PubMed  Google Scholar 

  18. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al KJ. Epidemiology of type 2 diabetes – global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10(1):107–11.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.

    Article  CAS  PubMed  Google Scholar 

  20. WHO. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 2000;894: i–xii, 1–253.

    Google Scholar 

  21. MacMahon S, Baigent C, Duffy S, et al. Body-mass index and cause-specific mortality in 900 000 adults: Collaborative analyses of 57 prospective studies. Lancet. 2009;373(9669):1083–96.

    Article  Google Scholar 

  22. Okorodudu DO, Jumean MF, Montori VM, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int J Obes. 2010;34(5):791–9.

    Article  CAS  Google Scholar 

  23. Han TS, Sattar N, Lean M. Assessment of obesity and its clinical implications. BMJ. 2006;333(7570):695–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Association AD. 2. Classification and diagnosis of diabetes. Diabetes Care. 2015;38(Supplement 1):S8–S16.

    Article  Google Scholar 

  25. Leisegang K, Henkel R, Agarwal A. Obesity and metabolic syndrome associated with systemic inflammation and the impact on the male reproductive system. Am J Reprod Immunol. 2019;82(5):e13178.

    Article  CAS  PubMed  Google Scholar 

  26. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105(2):141–50.

    Article  CAS  PubMed  Google Scholar 

  27. Emanuela F, Grazia M, Marco DR, Maria Paola L, Giorgio F, Marco B. Inflammation as a link between obesity and metabolic syndrome. J Nutr Metab. 2012;2012

    Google Scholar 

  28. Matsuda M, Shimomura I. Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013;7(5)

    Google Scholar 

  29. Rani V, Deep G, Singh RK, Palle K, Yadav UCS. Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci. 2016;148:183–93.

    Article  CAS  PubMed  Google Scholar 

  30. Biobaku F, Ghanim H, Batra M, Dandona P. Macronutrient-mediated inflammation and oxidative stress: relevance to insulin resistance, obesity, and atherogenesis. J Clin Endocrinol Metab. 2019;104(12):6118–28.

    Article  PubMed  Google Scholar 

  31. Anderson EJ, Lustig ME, Boyle KE, et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest. 2009;119(3):573–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Emami SR, Jafari M, Haghshenas R, Ravasi A. Impact of eight weeks endurance training on biochemical parameters and obesity-induced oxidative stress in high fat diet-fed rats. J Exerc Nutr Biochem. 2016;20(1):30–6.

    Article  Google Scholar 

  33. Wu H, Ballantyne CM. Metabolic inflammation and insulin resistance in obesity. Circ Res. Published online. 2020;1549–1564.

    Google Scholar 

  34. Luft VC, Schmidt MI, Pankow JS, et al. Chronic inflammation role in the obesity-diabetes association: a case-cohort study. Diabetol Metab Syndr. 2013;5(1):1–8.

    Article  CAS  Google Scholar 

  35. de Mello AH, Costa AB, Engel JDG, Rezin GT. Mitochondrial dysfunction in obesity. Life Sci. 2018;192:26–32.

    Article  PubMed  CAS  Google Scholar 

  36. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndroame. J Clin Invest. 2004;114(12):1752–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Darbandi M, Darbandi S, Agarwal A, et al. Reactive oxygen species and male reproductive hormones. Reprod Biol Endocrinol. 2018;16(1):1–14.

    Article  CAS  Google Scholar 

  38. Keaney JF, Larson MG, Vasan RS, et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham study. Arterioscler Thromb Vasc Biol. 2003;23(3):434–9.

    Article  CAS  PubMed  Google Scholar 

  39. Rupérez AI, Gil A, Aguilera CM. Genetics of oxidative stress in obesity. Int J Mol Sci. 2014;15(2):3118–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lapik IA, Galchenko AV, Gapparova KM. Micronutrient status in obese patients: a narrative review. Obes Med. 2020;18:100224.

    Article  Google Scholar 

  41. Via M. The malnutrition of obesity: micronutrient deficiencies that promote diabetes. ISRN Endocrinol. 2012;2012:1–8.

    Article  Google Scholar 

  42. Christopher EE. Micronutrient deficiency, a novel nutritional risk factor for insulin resistance and Syndrom X. Arch Food Nutr Sci. 2018;2(1):016–30. https://doi.org/10.29328/journal.afns.1001013.

    Article  Google Scholar 

  43. Barazzoni R, Gortan Cappellari G, Ragni M, Nisoli E. Insulin resistance in obesity: an overview of fundamental alterations. Eat Weight Disord. 2018;23(2):149–57. https://doi.org/10.1007/s40519-018-0481-6.

    Article  PubMed  Google Scholar 

  44. Yazıcı D, Sezer H. Insulin resistance, obesity and lipotoxicity. Adv Exp Med Biol. 2017;960:277–304.

    Article  PubMed  CAS  Google Scholar 

  45. Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17(1):24–38.

    Article  CAS  PubMed  Google Scholar 

  46. Korda M, Kubant R, Patton S, Malinski T. Leptin-induced endothelial dysfunction in obesity. Am J Physiol Heart Circ Physiol. 2008;295(4):H1514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chavez JA, Summers SA. Lipid oversupply, selective insulin resistance, and lipotoxicity: molecular mechanisms. Biochim Biophys Acta Mol Cell Biol Lipids. 2010;1801(3):252–65.

    Article  CAS  Google Scholar 

  48. Du Plessis SS, Cabler S, McAlister DA, Sabanegh E, Agarwal A. The effect of obesity on sperm disorders and male infertility. Nat Rev Urol. 2010;7(3):153–61.

    Article  PubMed  Google Scholar 

  49. Lotti F, Marchiani S, Corona G, Maggi M. Molecular Sciences metabolic syndrome and reproduction. Published online. 2021.

    Google Scholar 

  50. Liu Y, Ding Z. Obesity, a serious etiologic factor for male subfertility in modern society. Reproduction. 2017;154(4):R123–31. https://doi.org/10.1530/REP-17-0161.

    Article  PubMed  Google Scholar 

  51. Cardoso AM, Alves MG, Mathur PP, Oliveira PF, Cavaco JE, Rato L. Obesogens and male fertility. Obes Rev. 2017;18(1):109–25.

    Article  CAS  PubMed  Google Scholar 

  52. Ramalho-Santos J, Amaral S, Oliveira P. Diabetes and the impairment of reproductive function: possible role of mitochondria and reactive oxygen species. Curr Diabetes Rev. 2008;4(1):46–54.

    Article  PubMed  Google Scholar 

  53. Agarwal A, Sharma R, Roychoudhury S, Du Plessis S, Sabanegh E. MiOXSYS: a novel method of measuring oxidation reduction potential in semen and seminal plasma. Fertil Steril. 2016;106(3):566–573.e10.

    Article  CAS  PubMed  Google Scholar 

  54. Agarwal A, Parekh N, Panner Selvam MK, et al. Male oxidative stress infertility (MOSI): proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J Men?s Health. 2019;37(3):296–312.

    Article  Google Scholar 

  55. Baker MA, Aitken RJ. Reactive oxygen species in spermatozoa: methods for monitoring and significance for the origins of genetic disease and infertility. Reprod Biol Endocrinol. 2005;3:67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Tremellen K. Oxidative stress and male infertility – a clinical perspective. Hum Reprod Update. 2008;14(3):243–58.

    Article  CAS  PubMed  Google Scholar 

  57. Sabeti P, Pourmasumi S, Rahiminia T, Akyash F, Talebi AR. Etiologies of sperm oxidative stress. Int J Reprod Biomed. 2016;14(4):231–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Agarwal A, Rana M, Qiu E, AlBunni H, Bui AD, Henkel R. Role of oxidative stress, infection and inflammation in male infertility. Andrologia. 2018;50(11)

    Google Scholar 

  59. Leisegang K, Bouic PJD, Menkveld R, Henkel RR. Obesity is associated with increased seminal insulin and leptin alongside reduced fertility parameters in a controlled male cohort. Reprod Biol Endocrinol. 2014;12(1) https://doi.org/10.1186/1477-7827-12-34.

  60. La VS, Condorelli RA, Vicari E, Calogero AE. Negative effect of increased body weight on sperm conventional and nonconventional flow cytometric sperm parameters. J Androl. 2012;33(1):53–8.

    Article  CAS  Google Scholar 

  61. Leisegang K, Udodong A, Bouic PJD, Henkel RR. Effect of the metabolic syndrome on male reproductive function: a case-controlled pilot study. Andrologia. 2014;46(2):167–76. https://doi.org/10.1111/and.12060.

    Article  CAS  PubMed  Google Scholar 

  62. Leisegang K, Bouic PJD, Henkel RR. Metabolic syndrome is associated with increased seminal inflammatory cytokines and reproductive dysfunction in a case-controlled male cohort. Am J Reprod Immunol. 2016;76(2):155–63.

    Article  CAS  PubMed  Google Scholar 

  63. Malik I, Durairajanayagam D, Singh H. Leptin and its actions on reproduction in males. Asian J Androl. 2019;21(3):296–9.

    Article  CAS  PubMed  Google Scholar 

  64. Abbasihormozi S, Babapour V, Kouhkan A, et al. Stress hormone and oxidative stress biomarkers link obesity and diabetes with reduced fertility potential. Cell J. 2019;21(3):307–13.

    PubMed  PubMed Central  Google Scholar 

  65. Dobrakowski M, Kaletka Z, Machoń-Grecka A, et al. The role of oxidative stress, selected metals, and parameters of the immune system in male fertility. Oxidative Med Cell Longev. 2018;2018

    Google Scholar 

  66. Pearce KL, Hill A, Tremellen KP. Obesity related metabolic endotoxemia is associated with oxidative stress and impaired sperm DNA integrity. Basic Clin Androl. 2019;29(1)

    Google Scholar 

  67. Najafi M, Sreenivasa G, Aarabi M, Dhar M, Babu S, Malini S. Seminal malondialdehyde levels and oxidative stress in obese male infertility. J Pharm Res. 2012;5(7 Cop):3597–601.

    CAS  Google Scholar 

  68. Tunc O, Bakos HW, Tremellen K. Impact of body mass index on seminal oxidative stress. Andrologia. 2011;43(2):121–8. Accessed 10 May 2021. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1439-0272.2009.01032.x

  69. Taha EA, Sayed SK, Gaber HD, et al. Does being overweight affect seminal variables in fertile men? Reprod Biomed Online. 2016;33(6):703–8.

    Article  PubMed  Google Scholar 

  70. Ferigolo PC, Ribeiro de Andrade MB, Camargo M, et al. Sperm functional aspects and enriched proteomic pathways of seminal plasma of adult men with obesity. Andrology. 2019;7(3):341–9.

    Article  CAS  PubMed  Google Scholar 

  71. Jia YF, Feng Q, Ge ZY, et al. Obesity impairs male fertility through long-term effects on spermatogenesis. BMC Urol. 2018;18(1)

    Google Scholar 

  72. Luo Q, Li Y, Huang C, et al. Soy isoflavones improve the spermatogenic defects in diet-induced obesity rats through Nrf2/HO-1 pathway. Molecules. 2019;24(16):2966.

    Article  CAS  PubMed Central  Google Scholar 

  73. Wang EH, Yu ZL, Bu YJ, Xu PW, Xi JY, Liang HY. Grape seed proanthocyanidin extract alleviates high-fat diet induced testicular toxicity in rats. RSC Adv. 2019;9(21):11842–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rato L, Alves MG, Cavaco JE, Oliveira PF. High-energy diets: a threat for male fertility? Obes Rev. 2014;15(12):996–1007. https://doi.org/10.1111/obr.12226.

    Article  CAS  PubMed  Google Scholar 

  75. Zhao J, Zhai L, Liu Z, Wu S, Xu L. Leptin level and oxidative stress contribute to obesity-induced low testosterone in murine testicular tissue. Oxidative Med Cell Longev. 2014;2014

    Google Scholar 

  76. Suleiman JB, Nna VU, Zakaria Z, Othman ZA, Bakar ABA, Mohamed M. Obesity-induced testicular oxidative stress, inflammation and apoptosis: protective and therapeutic effects of orlistat. Reprod Toxicol. 2020;95:113–22.

    Article  CAS  PubMed  Google Scholar 

  77. Yi X, Tang D, Cao S, et al. Effect of different exercise loads on testicular oxidative stress and reproductive function in obese male mice. Oxidative Med Cell Longev. 2020;2020

    Google Scholar 

  78. Cannarella R, Crafa A, Barbagallo F, et al. Seminal plasma proteomic biomarkers of oxidative stress. Int J Mol Sci. 2020;21(23):1–13.

    Article  CAS  Google Scholar 

  79. Atilgan D, Parlaktas BS, Uluocak N, et al. Weight loss and melatonin reduce obesity-induced oxidative damage in rat testis. Adv Urol. 2013;2013

    Google Scholar 

  80. Rato L, Alves MG, Dias TR, et al. High-energy diets may induce a pre-diabetic state altering testicular glycolytic metabolic profile and male reproductive parameters. Andrology. 2013;1(3):495–504.

    Article  CAS  PubMed  Google Scholar 

  81. Zhou Y, Wu H, Huang H. Epigenetic effects of male obesity on sperm and offspring. J Bio-X Res. 2018;1(3):105–10.

    Google Scholar 

  82. Rodríguez-González GL, Vega CC, Boeck L, et al. Maternal obesity and overnutrition increase oxidative stress in male rat offspring reproductive system and decrease fertility. Int J Obes. 2015;39(4):549–56.

    Article  CAS  Google Scholar 

  83. Santos M, Rodríguez-González GL, Ibáñez C, Vega CC, Nathanielsz PW, Zambrano E. Adult exercise effects on oxidative stress and reproductive programming in male offspring of obese rats. Am J Physiol Regul Integr Comp Physiol. 2015;308(3):R219–25.

    Article  CAS  PubMed  Google Scholar 

  84. Jarvis S, Gethings LA, Samanta L, et al. High fat diet causes distinct aberrations in the testicular proteome. Int J Obes. 2020;44(9):1958–69.

    Article  CAS  Google Scholar 

  85. Maresch CC, Stute DC, Alves MG, Oliveira PF, de Kretser DM, Linn T. Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review. Hum Reprod Update. 2018;24(1):86–105.

    Article  CAS  PubMed  Google Scholar 

  86. Mahfouz R, Sharma R, Lackner J, Aziz N, Agarwal A. Evaluation of chemiluminescence and flow cytometry as tools in assessing production of hydrogen peroxide and superoxide anion in human spermatozoa. Fertil Steril. 2009;92(2):819–27.

    Article  CAS  PubMed  Google Scholar 

  87. Esfandiari N, Sharma RK, Saleh RA, Thomas AJ, Agarwal A. Utility of the nitroblue tetrazolium reduction test for assessment of reactive oxygen species production by seminal leukocytes and spermatozoa. J Androl. 2003;24(6):862–70. https://doi.org/10.1002/j.1939-4640.2003.tb03137.x.

    Article  CAS  PubMed  Google Scholar 

  88. Gosálvez J, Coppola L, Fernández JL, et al. Multi-centre assessment of nitroblue tetrazolium reactivity in human semen as a potential marker of oxidative stress. Reprod Biomed Online. 2017;34(5):513–21.

    Article  PubMed  CAS  Google Scholar 

  89. Agarwal A, Allamaneni SSR, Said TM. Chemiluminescence technique for measuring reactive oxygen species. Reprod Biomed Online. 2004;9(4):466–8.

    Article  CAS  PubMed  Google Scholar 

  90. Ko EY, Sabanegh ES, Agarwal A. Male infertility testing: reactive oxygen species and antioxidant capacity. Published online. 2014.

    Google Scholar 

  91. Agarwal A, Majzoub A. Laboratory tests for oxidative stress. Indian J Urol. 2017;33(3):199–206.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Agarwal A, Finelli R, Panner Selvam MK, et al. A global survey of reproductive specialists to determine the clinical utility of oxidative stress testing and antioxidant use in male infertility. World J Mens Health. 2021;39

    Google Scholar 

  93. Agarwal A, Leisegang K, Sengupta P. Oxidative stress in pathologies of male reproductive disorders. In: Pathology. Elsevier; 2020. p. 15–27.

    Chapter  Google Scholar 

  94. Stokes VJ, Anderson RA, George JT. How does obesity affect fertility in men – and what are the treatment options? Clin Endocrinol. 2015;82(5):633–8.

    Article  Google Scholar 

  95. Singh H, Pragasam SJ, Venkatesan V. Emerging therapeutic targets for metabolic syndrome: lessons from animal models. Endocr Metab Immune Disord Drug Targets. 2018;19(4):481–9.

    Article  CAS  Google Scholar 

  96. Leisegang K, Dutta S. Lifestyle management approaches to male infertility. Male Infertil Reprod Med. Published online October 28, 2019:141–51. https://doi.org/10.1201/9780429485763-15.

  97. Martins AD, Majzoub A, Agawal A. Metabolic syndrome and male fertility. World J Men?s Health. 2019;37(2):113–27.

    Article  Google Scholar 

  98. Håkonsen L, Thulstrup A, Aggerholm A, et al. Does weight loss improve semen quality and reproductive hormones? Results from a cohort of severely obese men. Reprod Health. 2011;8(1) https://doi.org/10.1186/1742-4755-8-24.

  99. Maiorino MI, Bellastella G, Esposito K. Lifestyle modifications and erectile dysfunction: what can be expected? Asian J Androl. 2015;17(1):5–10.

    Article  PubMed  Google Scholar 

  100. Jaffar M, Ashraf M. Does weight loss improve fertility with respect to semen parameters – results from a large cohort study. Int J Infertil Fetal Med. 2017;8(1):12–7.

    Article  Google Scholar 

  101. Bjørklund G, Chirumbolo S. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition. 2017;33:311–21.

    Article  PubMed  CAS  Google Scholar 

  102. Giahi L, Mohammadmoradi S, Javidan A, Sadeghi MR. Nutritional modifications in male infertility: a systematic review covering 2 decades. Nutr Rev. 2016;74(2):118–30.

    Article  PubMed  Google Scholar 

  103. Salas-Huetos A, Bulló M, Salas-Salvadó J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: a systematic review of observational studies. Hum Reprod Update. 2017;23(4):371–89.

    Article  PubMed  CAS  Google Scholar 

  104. Karayiannis D, Kontogianni MD, Mendorou C, Douka L, Mastrominas M, Yiannakouris N. Association between adherence to the Mediterranean diet and semen quality parameters in male partners of couples attempting fertility. Hum Reprod. 2017;32(1):215–22.

    CAS  PubMed  Google Scholar 

  105. Belobrajdic DP, Lam YY, Mano M, Wittert GA, Bird AR. Cereal based diets modulate some markers of oxidative stress and inflammation in lean and obese Zucker rats. Nutr Metab. 2011;8

    Google Scholar 

  106. Adewoyin M, Ibrahim M, Roszaman R, et al. Male infertility: the effect of natural antioxidants and phytocompounds on seminal oxidative stress. Diseases. 2017;5(1):9.

    Article  PubMed Central  CAS  Google Scholar 

  107. Huang CJ, McAllister MJ, Slusher AL, Webb HE, Mock JT, Acevedo EO. Obesity-related oxidative stress: the impact of physical activity and diet manipulation. Sport Med Open. 2015;1(1):1–12.

    Google Scholar 

  108. Heilbronn LK, De Jonge L, Frisard MI, et al. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. J Am Med Assoc. 2006;295(13):1539–48.

    Article  CAS  Google Scholar 

  109. Sitzmann BD, Brown DI, Garyfallou VT, et al. Impact of moderate calorie restriction on testicular morphology and endocrine function in adult rhesus macaques (Macaca mulatta). Age (Omaha). 2014;36:183–97. https://doi.org/10.1007/s11357-013-9563-6.

    Article  CAS  Google Scholar 

  110. Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother. 2005;59(7):365–73.

    Article  CAS  PubMed  Google Scholar 

  111. Osawa T, Kato Y. Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Ann NY Acad Sci. 2005;1043:440–51.

    Article  CAS  PubMed  Google Scholar 

  112. Akbari M, Ostadmohammadi V, Tabrizi R, et al. The effects of alpha-lipoic acid supplementation on inflammatory markers among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Nutr Metab. 2018;15(1)

    Google Scholar 

  113. Cheng HM, Koutsidis G, Lodge JK, Ashor A, Siervo M, Lara J. Tomato and lycopene supplementation and cardiovascular risk factors: a systematic review and meta-analysis. Atherosclerosis. 2017;257:100–8.

    Article  CAS  PubMed  Google Scholar 

  114. Fan L, Feng Y, Chen GC, Qin LQ, Fu C, ling, Chen LH. Effects of coenzyme Q10 supplementation on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2017;119:128–36.

    Article  CAS  PubMed  Google Scholar 

  115. Akbari M, Ostadmohammadi V, Tabrizi R, et al. The effects of melatonin supplementation on inflammatory markers among patients with metabolic syndrome or related disorders: a systematic review and meta-analysis of randomized controlled trials. Inflammopharmacology. 2018;26(4):899–907.

    Article  CAS  PubMed  Google Scholar 

  116. Agarwal A, Leisegang K, Majzoub A, et al. Utility of antioxidants in the treatment of male infertility: clinical guidelines based on a systematic review and analysis of evidence. World J Mens Health. 2021;39(2):1–58.

    Article  Google Scholar 

  117. Leisegang K. Herbal pharmacognosy: an introduction. In: Herbal medicine in andrology. Elsevier; 2021. p. 17–26.

    Chapter  Google Scholar 

  118. Mitjavila MT, Moreno JJ. The effects of polyphenols on oxidative stress and the arachidonic acid cascade. implications for the prevention/treatment of high prevalence diseases. Biochem Pharmacol. 2012;84(9):1113–22.

    Article  CAS  PubMed  Google Scholar 

  119. Donath MY, Dinarello CA, Mandrup-Poulsen T. Targeting innate immune mediators in type 1 and type 2 diabetes. Nat Rev Immunol. 2019;19(12):734–46.

    Article  CAS  PubMed  Google Scholar 

  120. Goldfine AB, Silver R, Aldhahi W, et al. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin Transl Sci. 2008;1(1):36–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fleischman A, Shoelson SE, Bernier R, Goldfine AB. Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care. 2008;31(2):289–94.

    Article  CAS  PubMed  Google Scholar 

  122. Goldfine AB, Shoelson SE. Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk. J Clin Invest. 2017;127(1):83–93.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Faghihimani E, Aminorroaya A, Rezvanian H, Adibi P, Ismail-Beigi F, Amini M. Reduction of insulin resistance and plasma glucose level by salsalate treatment in persons with prediabetes. Endocr Pract. 2012;18(6):826–33.

    Article  PubMed  Google Scholar 

  124. Ridker PM, Everett BM, Pradhan A, et al. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med. 2019;380(8):752–62.

    Article  CAS  PubMed  Google Scholar 

  125. Tardif J-C, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381(26):2497–505.

    Article  CAS  PubMed  Google Scholar 

  126. Saisho Y. Metformin and inflammation: its potential beyond glucose-lowering effect. Endocr Metab Immune Disord Targets. 2015;15(3):196–205.

    Article  CAS  Google Scholar 

  127. De Araújo AA, Pereira ADSBF, De Medeiros CACX, et al. Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis. PLoS One. 2017;12(8):e0183506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Alves MG, Martins AD, Vaz CV, et al. Metformin and male reproduction: effects on Sertoli cell metabolism. Br J Pharmacol. 2014;171(4):1033–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ye J, Luo D, Xu X, et al. Metformin improves fertility in obese males by alleviating oxidative stress-induced blood-testis barrier damage. Oxidative Med Cell Longev. 2019;2019

    Google Scholar 

  130. Winter AG, Zhao F, Lee RK. Androgen deficiency and metabolic syndrome in men. Transl Androl Urol. 2014;3(1):50–8. https://doi.org/10.3978/j.issn.2223-4683.2014.01.04.

    Article  PubMed  PubMed Central  Google Scholar 

  131. James PT, Leach R, Kalamara E, Shayeghi M. The worldwide obesity epidemic. Obes Res. November 2001;9(Suppl 4):228S–33S.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Leisegang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leisegang, K. (2022). Oxidative Stress in Men with Obesity, Metabolic Syndrome and Type 2 Diabetes Mellitus: Mechanisms and Management of Reproductive Dysfunction. In: Kesari, K.K., Roychoudhury, S. (eds) Oxidative Stress and Toxicity in Reproductive Biology and Medicine. Advances in Experimental Medicine and Biology, vol 1358. Springer, Cham. https://doi.org/10.1007/978-3-030-89340-8_11

Download citation

Publish with us

Policies and ethics