Skip to main content

Green Treatment Technologies for Microplastic Pollution

  • Chapter
  • First Online:
Microplastic Pollution

Abstract

In the current situation, to tackle global climate change and minimize plastic pollution, many countries are enacting policies and strict rules on the usage and alternatives of plastics. As a result, understanding the mechanisms of microplastic release into environmental materials is critical such as water interaction to mitigate the problem as effectively as possible. The primary goal of this study is to integrate plastic waste management and current statements of green treatment technologies for microplastic pollution to help sustain the environment and furthermore to improve sustainability by meeting our communal requirements without causing further harm or depletion of the remaining natural resources and developing alternative production methods to replace those that have been shown to harm human health and to decrease environmental plastic pollution. The sorption capability at the regolith showing a progressive bond with the concentration of microplastics as concentration increasing the sorption capacity also increases, and desorption study with water showing the microplastic particles is easily absorbed. The microplastics waste green treatment technologies such as to reduce and conserve plastic usage and its associated nonrenewable energy sources and to safeguard biodiversity, habitats, and biotas to confirm that future generations will be able to fulfill their own needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amiard-Triquet C, Jeantet AY, Berthet B (1993) Metal transfer in marine food chains: bioaccumulation and toxicity. Acta Biol Hung 44(4):387–409

    CAS  Google Scholar 

  • Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605

    Article  CAS  Google Scholar 

  • Arossa S, Martin C, Rossbach S, Duarte CM (2019) Microplastic removal by red sea giant clam (Tridacna maxima). Environ Pollut 252:1257–1266. https://doi.org/10.1016/j.envpol.2019.05.149

    Article  CAS  Google Scholar 

  • Arthur C, Baker JE, Bamford HA (2009) Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, September 9–11, 2008, University of Washington Tacoma, Tacoma, WA, USA

    Google Scholar 

  • Auta H, Emenike C, Fauziah S (2017) Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ Pollut 231:1552–1559. https://doi.org/10.1016/j.envpol.2017.09.043

    Article  CAS  Google Scholar 

  • Avio CG, Gorbi S, Regoli F (2017) Plastics and microplastics in the oceans: from emerging pollutants to emerged threat. Mar Environ Res 128:2–11

    Article  CAS  Google Scholar 

  • Ballent A, Corcoran PL, Madden O, Helm PA, Longstaffe FJ (2016) Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Mar Pollut Bull 110:383–395. https://doi.org/10.1016/j.marpolbul.2016.06.037

    Article  CAS  Google Scholar 

  • Barboza LGA, Vieira LR, Guilhermino L (2018) Single and combined effects of microplastics and mercury on juveniles of the European seabass (Dicentrarchus labrax): changes in behavioural responses and reduction of swimming velocity and resistance time. Environ Pollut 236:1014–1019

    Article  CAS  Google Scholar 

  • Bhuyan MS, Venkatramanan S, Selvam S, Szabo S, Hossain MM, Rashed-Un-Nabi M, Islam MS (2021) Plastics in marine ecosystem: a review of their sources and pollution conduits. Reg Stud Mar Sci 101539. https://doi.org/10.1016/j.rsma.2020.101539

  • Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol 45:9175–9179. https://doi.org/10.1021/es201811s

    Article  CAS  Google Scholar 

  • Chae Y, An YJ (2017) Effects of micro-and nanoplastics on aquatic ecosystems: current research trends and perspectives. Mar Pollut Bull 124(2):624–632

    Article  CAS  Google Scholar 

  • Cole M (2013) Microplastic Swallowing Zooplankton Environ. Sci Technol 47:6646–6655

    Article  CAS  Google Scholar 

  • Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62(12):2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025

    Article  CAS  Google Scholar 

  • Corcoran PL, Norris T, Ceccanese T, Walzak MJ, Helm PA, Marvin CH (2015) Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record. Environ Pollut 204:17–25. https://doi.org/10.1016/j.envpol.2015.04.009

    Article  CAS  Google Scholar 

  • Dawson AL, Kawaguchi S, King CK, Townsend KA, King R, Huston WM, Nash SMB (2018) Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat Commun 9(1):1001. https://doi.org/10.1038/s41467-018-03465-9

    Article  CAS  Google Scholar 

  • Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852. https://doi.org/10.1016/S0025-326X(02)00220-5

    Article  CAS  Google Scholar 

  • Dris R, Gasperi J, Mirande C, Mandin C, Guerrouache M, Langlois V, Tassin B (2017) A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut 221:453–458. https://doi.org/10.1016/j.envpol.2016.12.013

  • Ebere EC, Wirnkor VA, Ngozi VE (2019) Uptake of microplastics by plant: a reason to worry or to be happy? World Sci News 131:256–267

    CAS  Google Scholar 

  • Erni-Cassola G, Zadjelovic V, Gibson MI, and Christie-Oleza JA (2019) Distribution of plastic polymer types in the marine environment. A meta-analysis. J Hazard Mater 369:691–698. https://doi.org/10.1016/j.jhazmat.2019.02.067

  • Ersahin ME, Tao Y, Ozgun H, Gimenez JB, Spanjers H, van Lier JB (2017) Impact of anaerobic dynamic membrane bioreactor configuration on treatment and filterability performance. J Membr Sci 526:387–394. https://doi.org/10.1016/j.memsci.2016.12.057

    Article  CAS  Google Scholar 

  • Foley CJ, Feiner ZS, Malinich TD, Höök TO (2018) A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci Total Environ 631:550–559

    Article  Google Scholar 

  • Graham ER, Thompson JT (2009) Deposit-and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J Exp Mar Biol Ecol 368(1):22–29. https://doi.org/10.1016/j.jembe.2008.09.007

    Article  Google Scholar 

  • Gregory MR (2009) Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos Trans R Soc B Biol Sci 364(1526):2013–2025. https://doi.org/10.1098/rstb.2008.0265

    Article  Google Scholar 

  • Guern CL (2017) When the Mermaids Cry: The Great Plastic Tide. Plastic Pollution.

    Google Scholar 

  • Gurung K, Ncibi MC, Fontmorin JM, Särkkä H, Sillanpää M (2016) Incorporating submerged MBR in conventional activated sludge process for municipal wastewater treatment: a feasibility and performance assessment. J Membr Sci Technol. 6(3). https://doi.org/10.4172/2155-9589.1000158

  • Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P (2018) An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199

    Article  CAS  Google Scholar 

  • Hale RC (2018) Are the risks from microplastics truly trivial? Environ Sci Technol 52(3):931–931

    Article  CAS  Google Scholar 

  • Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar Pollut Bull 77:100–106. https://doi.org/10.1016/j.marpolbul.2013.10.025

    Article  CAS  Google Scholar 

  • Hermabessiere L, Dehaut A, Paul-Pont I, Lacroix C, Jezequel R, Soudant P, Duflos G (2017) Occurrence and effects of plastic additives on marine environments and organisms: a review. Chemosphere 182:781–793

    Article  CAS  Google Scholar 

  • Horton AA, Dixon SJ (2018) Microplastics: an introduction to environmental transport processes. WIREs Water 5(2):1268–1283. https://doi.org/10.1002/wat2.1268

    Article  Google Scholar 

  • Horton AA, Svendsen C, Williams RJ, Spurgeon DJ, Lahive E (2017a) Large microplastic particles in sediments of tributaries of the River Thames, UK–Abundance, sources and methods for effective quantification. Mar Pollut Bull. 114(1):218–226. https://doi.org/10.1016/j.marpolbul.2016.09.004

    Article  CAS  Google Scholar 

  • Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C (2017b) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141

    Article  CAS  Google Scholar 

  • Ivleva NP, Wiesheu AC, Niessner R (2017) Microplastic in aquatic ecosystems. Angew Chem Int Ed 56(7):1720–1739. https://doi.org/10.1002/anie.201606957

    Article  CAS  Google Scholar 

  • Jambeck JR, Geyer R, Wilcox C, Siegler T, Perryman M, Andrady A, et al (2015) Plastic waste inputs from land into the ocean. Science 347:768–771. https://doi.org/10.1126/science.1260352

  • Kelly BC, Ikonomou MG, Blair JD, Morin AE, Gobas FA (2007) Food web–specific biomagnification of persistent organic pollutants. Science 317(5835):236–239. https://doi.org/10.1126/science.1138275

    Article  CAS  Google Scholar 

  • Keswani A, Oliver DM, Gutierrez T, Quilliam RS (2016) Microbial hitchhikers on marine plastic debris: human exposure risks at bathing waters and beach environments. Mar Environ Res 118:10–19

    Article  CAS  Google Scholar 

  • Kole PJ, Lohr AJ, Van Belleghem FGAJ, Ragas AMJ (2017) Wear and tear of € tyres: a stealthy source of microplastics in the environment. Int J Environ Res Public Health 14:1265. https://doi.org/10.3390/ijerph14101265

    Article  CAS  Google Scholar 

  • Lares M, Ncibi MC, Sillanpää M (2018) Occurrence, identification and removal of microplastic particles and fibres in conventional activated sludge process and advanced MBR technology. Water Res 133:236–246. https://doi.org/10.1016/j.watres.2018.01.049

    Article  CAS  Google Scholar 

  • Li L, Xu G, Yu H, Xing J (2018) Dynamic membrane for microparticle removal in wastewater treatment: performance and influencing factors. Sci Total Environ. 627:332–340. https://doi.org/10.1016/j.scitotenv.2018.01.239

    Article  CAS  Google Scholar 

  • Li L, Zhou Q, Yin N, Tu C, Luo Y (2019) Uptake and accumulation of microplastics in an edible plant. Chin Sci Bull 64(9):928–934

    Article  Google Scholar 

  • Magnusson K, Eliasson A, Fråne K, Haikonen J, Hultén M, Olshammar, et al (2016) Swedish sources and pathways for microplastics to the marine environment. A review of existing data. Report Number C 183. Swedish Environmental Protection Agency, Stockholm, Sweden (2016)

    Google Scholar 

  • Manikanda Bharath K, Natesan U, Vaikunth R, Praveen Kumar R, Ruthra R, Srinivasalu S (2021a) Spatial distribution of microplastic concentration around landfill sites and its potential risk on groundwater. Chemosphere 277:130263. https://doi.org/10.1016/j.chemosphere.2021.130263

    Article  CAS  Google Scholar 

  • Manikanda Bharath K, Srinivasalu S, Natesan U, Ayyamperumal R, Nirmal Kalam S, Anbalagan S, Sujatha K, Alagarasan C (2021b) Microplastics as an emerging threat to the freshwater ecosystems of Veeranam lake in South India: a multidimensional approach. Chemosphere 264(2):128502. https://doi.org/10.1016/j.chemosphere.2020.128502

    Article  CAS  Google Scholar 

  • Martins A, Guimarães L, Guilhermino L (2013) Chronic toxicity of the veterinary antibiotic florfenicol to Daphnia magna assessed at two temperatures. Environ Toxicol Pharmacol 36:1022–1032

    Google Scholar 

  • Martí E, Martin C, Cózar A, Duarte CM (2017) Low abundance of plastic fragments in the surface waters of the Red Sea. Front Mar Sci 4:333

    Article  Google Scholar 

  • Napper IE, Thompson RC (2016) Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull 112:39–45. https://doi.org/10.1016/j.marpolbul.2016.09.025

    Article  CAS  Google Scholar 

  • Nolte TM, Hartmann NB, Kleijn JM, Garnæs J, van de Meent D, Hendriks AJ, Baun A (2017) The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquat Toxicol 183:11–20. https://doi.org/10.1016/j.aquatox.2016.12.005

    Article  CAS  Google Scholar 

  • Noren F, Naustvoll F (2010) Survey of Microscopic Anthropogenic Particles in Skagerrak. Commissioned by KLIMA- OG FORURENSNINGSDIREKTORATET, Norway

    Google Scholar 

  • Paço A, Duarte K, da Costa JP, Santos PS, Pereira R, Pereira ME, Rocha-Santos TA (2017) Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci Total Environ. 586:10–15. https://doi.org/10.1016/j.scitotenv.2017.02.017

    Article  CAS  Google Scholar 

  • Padervand M, Lichtfouse E, Robert D, Wang C (2020) Removal of microplastics from the environment. A review. Environ Chem Lett 18(8). https://doi.org/10.1007/s10311-020-00983-1

  • Plastics Europe (2017) Plastics—The facts. Plastic Europe. https://www.plasticseurope.org/en/resources/publications/274-plastics-facts-2017

  • Qi Y, Yang X, Pelaez AM, Lwanga EH, Beriot N, Gertsen H, Geissen V (2018) Macro-and micro-plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci Total Environ 645:1048–1056

    Article  CAS  Google Scholar 

  • Ryan PG, Moore CJ, Van Franeker JA, Moloney CL (2009) Monitoring the abundance of plastic debris in the marine environment. Philos Trans R Soc Lond Ser B Biol Sci 364(1526):1999–2012

    Article  CAS  Google Scholar 

  • Solis M, Silveira S (2020) Technologies for chemical recycling of household plastics - A technical review and TRL assessment. Waste Manag 105:128–138. https://doi.org/10.1016/j.wasman.2020.01.038

  • Sundbæk KB, Koch IDW, Villaro CG, Rasmussen NS, Holdt SL, Hartmann NB (2018) Sorption of fluorescent polystyrene microplastic particles to edible seaweed Fucus vesiculosus. J Appl Phycol 30(5):2923–2927. https://doi.org/10.1007/s10811-018-1472-8

    Article  CAS  Google Scholar 

  • Talvitie J, Mikola A, Koistinen A, Setälä O (2017) Solutions to microplastic pollution—removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res 123:401–407. https://doi.org/10.1016/j.watres.2017.07.005

    Article  CAS  Google Scholar 

  • Thompson RC (2006) Plastic debris in the marine environment: consequences and solutions. In: Krause JC, Nordheim H, Bräger S (Eds), Marine Nature Conservation in Europe. Federal Agency for Nature Conservation, Stralsund, Germany, pp. 107–115

    Google Scholar 

  • Unice KM, Weeber MP, Abramson MM, Reid RCD, van Gils JAG, Markus AA, et al. (2019) Characterizing export of land-based microplastics to the estuary - part I: application of integrated geospatial microplastic transport models to assess tire and road wear particles in the Seine watershed. Sci Total Environ 646:1639–1649

    Google Scholar 

  • Verschoor AJ (2015) Towards a definition of microplastics: considerations for the specification of physico-chemical properties. National Institute for Public Health and the Environment, Bilthoven, p 6

    Google Scholar 

  • Ward M (2015) U.S. Patent No. 8,944,253. Washington, DC: U.S. Patent and Trademark Office

    Google Scholar 

  • Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial communities on plastic marine debris Environ. Sci Technol 47(13):7137–7146

    Article  CAS  Google Scholar 

  • Zhang K, Xiong X, Hu HJ, Wu CX, Bi YH, Wu YH, Zhou BS, Lam PKS, Liu JT (2017) Occurrence and characteristics of microplastic pollution in Xiangxi Bay of three Gorges Reservoir, China. Environ Sci Technol 51:3794–3801

    Google Scholar 

  • Zhong W, Li S (2020) Microplastic pollution control strategy. IOP Conf Ser Earth Environ Sci 546:032046

    Article  Google Scholar 

  • Zitko V, Hanlon M (1991) Another source of pollution by plastics: skin cleaners with plastic scrubbers. Mar Pollut Bull 22(1):41–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manikanda Bharath, K., Ruthra, R., Silva, J.D., Velusamy, S., Natesan, U., Hashmi, M.Z. (2022). Green Treatment Technologies for Microplastic Pollution. In: Hashmi, M.Z. (eds) Microplastic Pollution. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-89220-3_21

Download citation

Publish with us

Policies and ethics