Skip to main content

Semantic Structural and Occlusive Feature Fusion for Pedestrian Detection

  • Conference paper
  • First Online:
PRICAI 2021: Trends in Artificial Intelligence (PRICAI 2021)

Abstract

Pedestrian detection under occlusion scenes remains a formidable challenge in computer vision. Recently, anchor-free approach has been raised on the object detection and pedestrian detection field, anchor-free detector Center and Scale Prediction (CSP) has been proposed in pedestrian detection without special measures for occlusion. In this paper, we propose an anchor-free detector named OCSP with power ful occlusion handling ability to existing anchor-free detection network. OCSP integrates prior information into the network to handle occlusion. This high-fusion prior information gives the detector a hint about identifying the structural features of pedestrians. OCSP becomes more robust with the prior information which fusion the semantic head, the visible part, and the size and center body for each pedestrian. The detector enhances the perception of occlusion by predicting the semantic head and visible part. Besides, we design a head branch and add predicting the visible box to achieve a similar result. Experiments show that this fusion of prior information represents a suitable combination. We compare our OCSP with state-of-arts models on the Citypersons dataset, the proposed OCSP detector achieves the state-of-arts result on the CityPersons benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, J., et al.: Pedestrian as points: an improved anchor-free method for center-based pedestrian detection. IEEE Access 8, 179666–179677 (2020)

    Article  Google Scholar 

  2. Chi, C., Zhang, S., Xing, J., Lei, Z., Li, S.Z., Zou, X.: PedHunter: occlusion robust pedestrian detector in crowded scenes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10639–10646 (2020)

    Google Scholar 

  3. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  4. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2011)

    Article  Google Scholar 

  5. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  6. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45

    Chapter  Google Scholar 

  12. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  13. Liu, W., Liao, S., Hu, W., Liang, X., Chen, X.: Learning efficient single-stage pedestrian detectors by asymptotic localization fitting. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 643–659. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_38

    Chapter  Google Scholar 

  14. Liu, W., Liao, S., Ren, W., Hu, W., Yu, Y.: High-level semantic feature detection: A new perspective for pedestrian detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5187–5196 (2019)

    Google Scholar 

  15. Lu, R., Ma, H., Wang, Y.: Semantic head enhanced pedestrian detection in a crowd. Neurocomputing 400, 343–351 (2020)

    Article  Google Scholar 

  16. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  17. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497 (2015)

  18. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  19. Sha, M., Boukerche, A.: Semantic fusion-based pedestrian detection for supporting autonomous vehicles. In: 2020 IEEE Symposium on Computers and Communications (ISCC), pp. 1–6. IEEE (2020)

    Google Scholar 

  20. Shang, C., Ai, H., Zhuang, Z., Chen, L., Xing, J.: ZoomNet: deep aggregation learning for high-performance small pedestrian detection. In: Asian Conference on Machine Learning, pp. 486–501. PMLR (2018)

    Google Scholar 

  21. Song, T., Sun, L., Xie, D., Sun, H., Pu, S.: Small-scale pedestrian detection based on topological line localization and temporal feature aggregation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 554–569. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_33

    Chapter  Google Scholar 

  22. Tarvainen, A., Valpola, H.: Weight-averaged, consistency targets improve semi-supervised deep learning results. CoRR vol. abs/1703 2017 (1780)

    Google Scholar 

  23. Ujjwal, U., Dziri, A., Leroy, B., Bremond, F.: A one-and-half stage pedestrian detector. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 776–785 (2020)

    Google Scholar 

  24. Wang, W.: Adapted center and scale prediction: more stable and more accurate. arXiv preprint arXiv:2002.09053 (2020)

  25. Xie, J., Pang, Y., Cholakkal, H., Anwer, R., Khan, F., Shao, L.: PSC-Net: learning part spatial co-occurrence for occluded pedestrian detection. Sci. China Inf. Sci. 64(2), 1–13 (2021)

    Article  MathSciNet  Google Scholar 

  26. Zhang, H., et al.: ResNeSt: split-attention networks. arXiv preprint arXiv:2004.08955 (2020)

  27. Zhang, J., et al.: Attribute-aware pedestrian detection in a crowd. IEEE Trans. Multimedia 23, 3085–3097 (2020)

    Article  Google Scholar 

  28. Zhang, S., Benenson, R., Schiele, B.: CityPersons: a diverse dataset for pedestrian detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3221 (2017)

    Google Scholar 

  29. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Occlusion-aware R-CNN: detecting pedestrians in a crowd. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 657–674. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_39

    Chapter  Google Scholar 

  30. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (61841602, 61806024), the Jilin Province Education Department Scientific Research Planning Foundation of China (JJKH20210753KJ, JJKH20200618KJ).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Zhang, Y., Ke, H., Wei, N., Xu, Z. (2021). Semantic Structural and Occlusive Feature Fusion for Pedestrian Detection. In: Pham, D.N., Theeramunkong, T., Governatori, G., Liu, F. (eds) PRICAI 2021: Trends in Artificial Intelligence. PRICAI 2021. Lecture Notes in Computer Science(), vol 13031. Springer, Cham. https://doi.org/10.1007/978-3-030-89188-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89188-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89187-9

  • Online ISBN: 978-3-030-89188-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics