Skip to main content

A Nature-Inspired Algorithm to Adaptively Safe Navigation of a Covid-19 Disinfection Robot

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13015))

Included in the following conference series:

Abstract

Autonomous mobile robots have been extensively used in medical services. During the Covid-19 pandemic, ultraviolet type-C irradiation (UV-C) disinfection robots and spray disinfection robots have been deployed in hospitals and other public open spaces. However, adaptively safe navigation of disinfection robots and spray disinfection robots have not been adequately studied. In this paper, an adaptively safe navigation model of Covid-19 disinfection robots is proposed using a nature-inspired method, cuckoo search algorithm (CSA). A Covid-19 disinfection robot is adaptively navigated to decelerate in the vicinity of objects and obstacles thus it can sufficiently spray and illuminate around objects, which assures objects to be fully disinfected against SARS-CoV-2. In addition, the path smoothing scheme based on the \(\mathcal {B}\)-spline curve is integrated with adaptive-speed navigation to generate a safer and smoother trajectory at a reasonable distance from the obstacle. Simulation and comparative studies prove the effectiveness of the proposed model, which can plan a reasonable and short trajectory with obstacle avoidance, and show better performance than other meta-heuristic optimization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tiseni, L., Chiaradia, D., Gabardi, M., Solazzi, M., Leonardis, D., Frisoli, A.: UV-C mobile robots with optimized path planning: algorithm design and on-field measurements to improve surface disinfection against SARS-CoV-2. IEEE Robot. Autom. Mag. 28(1), 59–70 (2021)

    Article  Google Scholar 

  2. Conroy, J., et al.: Robot development and path planning for indoor ultraviolet light disinfection. arXiv preprint arXiv:2104.02913 (2021)

  3. Chintam, P., Luo, C., Liu, L.: Advised RRT*: an optimal sampling space enabled bi-directional RRT*. Technical report, IEEE Robotics and Automation Letters (RA-L) (submitted)

    Google Scholar 

  4. Cheng, K.P., Mohan, R.E., Nhan, N.H.K., Le, A.V.: Graph theory-based approach to accomplish complete coverage path planning tasks for reconfigurable robots. IEEE Access 7, 94642–94657 (2019)

    Article  Google Scholar 

  5. Moussa, M., Beltrame, G.: Real-time path planning with virtual magnetic fields. IEEE Robot. Autom. Lett. 6(2), 3279–3286 (2021)

    Article  Google Scholar 

  6. Yang, S.X., Luo, C.: A neural network approach to complete coverage path planning. IEEE Trans. Syst. Man Cybern. Part B 34(1), 718–725 (2004)

    Article  Google Scholar 

  7. Luo, C., Yang, S.X., Li, X., Meng, M.Q.-H.: Neural dynamics driven complete area coverage navigation through cooperation of multiple mobile robots. IEEE Trans. Industr. Electron. 64(1), 750–760 (2017)

    Article  Google Scholar 

  8. Lei, T., Luo, C., Ball, J.E., Bi, Z.: A hybrid fireworks algorithm to navigation and mapping. In: Handbook of Research on Fireworks Algorithms and Swarm Intelligence, pp. 213–232. IGI Global (2019)

    Google Scholar 

  9. Lei, T., Luo, C., Ball, J.E., Rahimi, S.: A graph-based ant-like approach to optimal path planning. In: 2020 IEEE Congress on Evolutionary Computation, vol. 1, no. 6 (2020)

    Google Scholar 

  10. Nie, Z., Yang, X., Gao, S., Zheng, Y., Wang, J., Wang, Z.: Research on autonomous moving robot path planning based on improved particle swarm optimization. In: 2016 IEEE Congress on Evolutionary Computation, CEC, pp. 2532–2536 (2016)

    Google Scholar 

  11. Sarkar, R., Barman, D., Chowdhury, N.: Domain knowledge based genetic algorithms for mobile robot path planning having single and multiple targets. J. King Saud Univ. Comput. Inf. Sci. (2020)

    Google Scholar 

  12. Wang, J., Chi, W., Li, C., Wang, C., Meng, M.Q.-H.: Neural RRT*: learning-based optimal path planning. IEEE Trans. Autom. Sci. Eng. 17(4), 1748–1758 (2020)

    Article  Google Scholar 

  13. Wang, J., Chen, J., Cheng, S., Xie, Y.: Double heuristic optimization based on hierarchical partitioning for coverage path planning of robot mowers. In: 12th International Conference on Computational Intelligence and Security, pp. 186–189 (2016)

    Google Scholar 

  14. Chen, Y., Bai, G., Zhan, Y., Hu, X., Liu, J.: Path planning and obstacle avoiding of the USV based on improved ACO-APF hybrid algorithm with adaptive early-warning. IEEE Access 9, 40728–40742 (2021)

    Article  Google Scholar 

  15. Luo, C., Yang, S.X., Krishnan, M., Paulik, M.: An effective vector-driven biologically motivated neural network algorithm to real-time autonomous robot navigation. In: IEEE International Conference on Robotics and Automation, pp. 4094–4099 (2014)

    Google Scholar 

  16. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 210–214 (2009)

    Google Scholar 

  17. Farin, G., Rein, G., Sapidis, N., Worsey, A.J.: Fairing cubic B-spline curves. Comput. Aided Geom. Des. 4(1–2), 91–103 (1987)

    Article  MathSciNet  Google Scholar 

  18. Huang, Y., Wang, P., Yuan, M., Jiang, M.: Path planning of mobile robots based on logarithmic function adaptive artificial fish swarm algorithm. In: 2017 36th Chinese Control Conference (CCC), pp. 4819–4823 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaomin Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lei, T., Sellers, T., Rahimi, S., Cheng, S., Luo, C. (2021). A Nature-Inspired Algorithm to Adaptively Safe Navigation of a Covid-19 Disinfection Robot. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89134-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89133-6

  • Online ISBN: 978-3-030-89134-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics