Skip to main content

Sampling of Non-flat Morphology for Grey Value Images

  • 308 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 13053)

Abstract

Sampling is a basic operation in image processing. In previous literature, a morphological sampling theorem has been established showing how sampling interacts with image reconstruction by morphological operations. However, while many aspects of morphological sampling have been investigated for binary images in classic works, only some of them have been extended to grey scale imagery. Especially, previous attempts to study the relation between sampling and grey scale morphology are restricted by construction to flat morphological filters. In order to establish a sampling theory for non-flat morphology, we establish an alternative definition for grey scale opening and closing relying on the umbra notion. Making use of this, we prove a sampling theorem about the interaction of sampling with fundamental morphological operations for non-flat morphology. This allows to make precise corresponding relations between sampling and image reconstruction, extending classic results for flat morphology of grey value images.

Keywords

  • Sampling theorem
  • Mathematical morphology
  • Opening
  • Closing
  • Non-flat morphology

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-89131-2_8
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-89131-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9(4), 532–550 (1987). https://doi.org/10.1109/TPAMI.1987.4767941

  2. Haralick, R., Zhuang, X., Lin, C., Lee, J.: Binary morphology: working in the sampled domain. In: Proceedings CVPR 1988: The Computer Society Conference on Computer Vision and Pattern Recognition, pp. 780–791 (1988). https://doi.org/10.1109/CVPR.1988.196323

  3. Haralick, R., Zhuang, X., Lin, C., Lee, J.: The digital morphological sampling theorem. IEEE Trans. Acoust. Speech Signal Process. 37(12), 2067–2090 (1989). https://doi.org/10.1109/29.45553

    CrossRef  MATH  Google Scholar 

  4. Heijmans, H.: A note on the umbra transform in gray-scale morphology. Pattern Recogn. Lett. 14(11), 877–881 (1993). https://doi.org/10.1016/0167-8655(93)90151-3

    CrossRef  MATH  Google Scholar 

  5. Heijmans, H., Toet, A.: Morphological sampling. CVGIP: Image Underst. 54(3), 384–400 (1991). https://doi.org/10.1016/1049-9660(91)90038-Q

    CrossRef  MATH  Google Scholar 

  6. Najman, L., Talbot, H.: Mathematical Morphology: From Theory to Applications. ISTE Wiley (2010). https://doi.org/10.1002/9781118600788

  7. Roerdink, J.B.T.M.: Mathematical morphology in computer graphics, scientific visualization and visual exploration. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 367–380. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21569-8_32

    CrossRef  Google Scholar 

  8. Ronse, C.: Why mathematical morphology needs complete lattices. Signal Process. 21(2), 129–154 (1990). https://doi.org/10.1016/0165-1684(90)90046-2

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. Ronse, C., Heijmans, H.: The algebraic basis of mathematical morphology i. dilations and erosions. Comput. Vis. Graph. Image Process. 50(3), 245–295 (1990). https://doi.org/10.1016/0734-189X(90)90148-O

  10. Ronse, C., Heijmans, H.: The algebraic basis of mathematical morphology: Ii. openings and closings. CVGIP: Image Underst. 54(1), 74–97 (1991). https://doi.org/10.1016/1049-9660(91)90076-2

  11. Serra, J., Soille, P.: Mathematical Morphology and Its Applications to Image Processing. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-011-1040-2

    CrossRef  MATH  Google Scholar 

  12. Shannon, C.: Communication in the presence of noise. Proc. IEEE 86, 447–457 (1998)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Sridhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sridhar, V., Breuß, M. (2021). Sampling of Non-flat Morphology for Grey Value Images. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds) Computer Analysis of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science(), vol 13053. Springer, Cham. https://doi.org/10.1007/978-3-030-89131-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89131-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89130-5

  • Online ISBN: 978-3-030-89131-2

  • eBook Packages: Computer ScienceComputer Science (R0)