Skip to main content

Preparation of Mesoporous Inorganic Nanowires, Nanorods, Nanofibers and Nanobelts

  • Chapter
  • First Online:
One-Dimensional Mesoporous Inorganic Nanomaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 321))

  • 348 Accesses

Abstract

The 1D nanomaterials, which may exist as wires, fibers, belts, tubes or rods, arouse wide attention because they are significant in fundamental scientific research and may potentially be applied in the field of nanotechnology (Li and Xia in Nano Lett 4:933–938, 2004; Tian et al. in Nature 449:885–889, 2007; Zheng et al. in Science 333:206–209, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Li, Y. Xia, Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4(5), 933–938 (2004)

    CAS  Google Scholar 

  2. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–889 (2007)

    CAS  Google Scholar 

  3. H. Zheng, J.B. Rivest, T.A. Miller, B. Sadtler, A. Lindenberg, M.F. Toney, L.-W. Wang, C. Kisielowski, A.P. Alivisatos, Observation of transient structural-transformation dynamics in a Cu2S nanorod. Science 333(6039), 206–209 (2011)

    CAS  Google Scholar 

  4. M. Teng, J. Qiao, F. Li, P.K. Bera, Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules. Carbon 50(8), 2877–2886 (2012)

    CAS  Google Scholar 

  5. Q. Wei, Q. An, D. Chen, L. Mai, S. Chen, Y. Zhao, K.M. Hercule, L. Xu, A. Minhas-Khan, Q. Zhang, One-pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries. Nano Lett. 14(2), 1042–1048 (2014)

    CAS  Google Scholar 

  6. G. Liu, K. Wang, X. Gao, D. He, J. Li, Fabrication of mesoporous NiFe2O4 nanorods as efficient oxygen evolution catalyst for water splitting. Electrochim Acta 211, 871–878 (2016)

    CAS  Google Scholar 

  7. Y.F. Hsu, Y.Y. Xi, K.H. Tam, A.B. Djurišić, J. Luo, C.C. Ling, C.K. Cheung, A.M.C. Ng, W.K. Chan, X. Deng, Undoped p-Type ZnO nanorods synthesized by a hydrothermal method. Adv. Funct. Mater. 18(7), 1020–1030 (2008)

    CAS  Google Scholar 

  8. B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131(11), 3985–3990 (2009)

    CAS  Google Scholar 

  9. W. Li, Y.-X. Yin, S. Xin, W.-G. Song, Y.-G. Guo, Low-cost and large-scale synthesis of alkaline earth metal germanate nanowires as a new class of lithium ion battery anode material. Energy Environ. Sci. 5(7), 8007–8013 (2012)

    CAS  Google Scholar 

  10. L. Zhang, K. Zhao, W. Xu, J. Meng, L. He, Q. An, X. Xu, Y. Luo, T. Zhao, L. Mai, Mesoporous VO2 nanowires with excellent cycling stability and enhanced rate capability for lithium batteries. RSC Adv. 4(63), 33332 (2014)

    CAS  Google Scholar 

  11. R. Vishnuraj, K.K. Karuppanan, M. Aleem, B. Pullithadathil, Boosting the performance of NO2 gas sensors based on n–n type mesoporous ZnO@In2O3 heterojunction nanowires: in situ conducting probe atomic force microscopic elucidation of room temperature local electron transport. Nanoscale Adv. 2(10), 4785-4797 (2020).

    Article  Google Scholar 

  12. D. Li, X. Wu, T. Xiao, W. Tao, M. Yuan, X. Hu, P. Yang, Y. Tang, Hydrothermal synthesis of mesoporous Co3O4 nanobelts by means of a compound precursor. J. Phys. Chem. Solids 73(2), 169–175 (2011)

    Google Scholar 

  13. B. Li, J. Feng, Y. Qian, S. Xiong, Mesoporous quasi-single-crystalline NiCo2O4 superlattice nanoribbons with optimizable lithium storage properties. J. Mater. Chem. A 3(19), 10336–10344 (2015)

    CAS  Google Scholar 

  14. Y. Sun, W. Wang, J. Qin, D. Zhao, B. Mao, Y. Xiao, M. Cao, Oxygen vacancy-rich mesoporous W18O49 nanobelts with ultrahigh initial Coulombic efficiency toward high-performance lithium storage. Electrochim Acta 187, 329–339 (2016)

    CAS  Google Scholar 

  15. Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291(5510), 1947–1949 (2001)

    CAS  Google Scholar 

  16. J.-f. Liu, X. Wang, Q. Peng, Y. Li, Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials. Adv. Mater. 17(6), 764–767 (2005)

    Google Scholar 

  17. Z. Zhao, J. Tian, Y. Sang, A. Cabot, H. Liu, Structure, synthesis, and applications of TiO2 nanobelts. Adv. Mater. 27(16), 2557–2582 (2015)

    CAS  Google Scholar 

  18. S.K. Cushing, F. Meng, J. Zhang, B. Ding, C.K. Chen, C.-J. Chen, R.-S. Liu, A.D. Bristow, J. Bright, P. Zheng, Effects of defects on photocatalytic activity of hydrogen-treated titanium oxide nanobelts. ACS Catal. 7(3), 1742–1748 (2017)

    CAS  Google Scholar 

  19. L. Tian, H. Zou, J. Fu, X. Yang, Y. Wang, H. Guo, X. Fu, C. Liang, M. Wu, P.K. Shen, Q. Gao, Topotactic conversion route to mesoporous quasi-single-crystalline Co3O4 nanobelts with optimizable electrochemical performance. Adv. Funct. Mater. 20(4), 617–623 (2010)

    CAS  Google Scholar 

  20. F. Li, G.F. Han, H.J. Noh, Y. Lu, J. Xu, Y. Bu, Z. Fu, J.B. Baek, Construction of porous Mo3P/Mo nanobelts as catalysts for efficient water splitting. Angew. Chem. Int. Ed. 57(43), 14139–14143 (2018)

    CAS  Google Scholar 

  21. Y. Zhang, Y. Chen, J. Zhou, T. Wang, Y. Zhao, Synthesis and high catalytic activity of mesoporous nanowires for carbon monoxide oxidation. Solid State Commun. 149(15–16), 585–588 (2009)

    CAS  Google Scholar 

  22. Z. Zhu, H. Sun, H. Liu, D. Yang, PEG-directed hydrothermal synthesis of alumina nanorods with mesoporous structure via AACH nanorod precursors. J Mater Sci 45(1), 46–50 (2009)

    CAS  Google Scholar 

  23. A.A. Ismail, T.A. Kandiel, D.W. Bahnemann, Novel (and better?) titania-based photocatalysts: brookite nanorods and mesoporous structures. J. Photochem. Photobiol. A 216(2–3), 183–193 (2010)

    CAS  Google Scholar 

  24. Y. Qiu, K. Yan, S. Yang, Ultrafine tin nanocrystallites encapsulated in mesoporous carbon nanowires: scalable synthesis and excellent electrochemical properties for rechargeable lithium ion batteries. Chem Commun. 46(44), 8359 (2010)

    CAS  Google Scholar 

  25. B. Zhao, F. Chen, H. Liu, J. Zhang, Mesoporous TiO2-B nanowires synthesized from tetrabutyl titanate. J. Phys. Chem. Solids 72(3), 201–206 (2011)

    CAS  Google Scholar 

  26. W. Zhao, Y. Yang, R. Hao, F. Liu, Y. Wang, M. Tan, J. Tang, D. Ren, D. Zhao, Synthesis of mesoporous β-Ga2O3 nanorods using PEG as template: preparation, characterization and photocatalytic properties. J. Hazard. Mater. 192(3), 1548–1554 (2011)

    CAS  Google Scholar 

  27. Z. Liu, X. Liu, Q. Yuan, K. Dong, L. Jiang, Z. Li, J. Ren, X. Qu, Hybrid mesoporous gadolinium oxide nanorods: a platform for multimodal imaging and enhanced insoluble anticancer drug delivery with low systemic toxicity. J. Mater. Chem. 22(30), 14982 (2012)

    CAS  Google Scholar 

  28. T.-Y. Ma, H. Li, T.-Z. Ren, Z.-Y. Yuan, Mesoporous SrTiO3 nanowires from a template-free hydrothermal process. RSC Adv. 2(7), 2790 (2012)

    CAS  Google Scholar 

  29. Y.Y. Pu, Y. Li, W. Zhuang, M. Zhang, B.Z. Li, Y.G. Yang, Preparation and characterizations of helical mesoporous silica nanorods using CTAB and alcohols. Chin. Chem. Lett. 23(10), 1201–1204 (2012)

    CAS  Google Scholar 

  30. Y. Shao, Y. Ma, Mesoporous CeO2 nanowires as recycled photocatalysts. Sci. China Chem. 55(7), 1303–1307 (2012)

    CAS  Google Scholar 

  31. D. Su, H.-S. Kim, W.-S. Kim, G. Wang, Mesoporous nickel oxide nanowires: hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance. Chem. Eur. J. 18(26), 8224–8229 (2012)

    CAS  Google Scholar 

  32. Z. Xiao, Y. Xia, Z. Ren, Z. Liu, G. Xu, C. Chao, X. Li, G. Shen, G. Han, Facile synthesis of single-crystalline mesoporous α-Fe2O3 and Fe3O4 nanorods as anode materials for lithium-ion batteries. J. Mater. Chem. 22(38), 20566 (2012)

    Google Scholar 

  33. G.-Y. Zhang, Y. Feng, Y.-Y. Xu, D.-Z. Gao, Y.-Q. Sun, Controlled synthesis of mesoporous α-Fe2O3 nanorods and visible light photocatalytic property. Mater. Res. Bull. 47(3), 625–630 (2012)

    CAS  Google Scholar 

  34. J. Zhao, M. Zheng, X. Lai, H. Lu, N. Li, Z. Ling, J. Cao, Preparation of mesoporous In2O3 nanorods via a hydrothermal-annealing method and their gas sensing properties. Mater. Lett. 75, 126–129 (2012)

    CAS  Google Scholar 

  35. Z. Bai, B. Sun, N. Fan, Z. Ju, M. Li, L. Xu, Y. Qian, Branched mesoporous Mn3O4 nanorods: facile synthesis and catalysis in the degradation of methylene blue. Chem. Eur. J. 18(17), 5319–5324 (2012)

    CAS  Google Scholar 

  36. K.-H. Lee, Y.-W. Lee, A.R. Ko, G. Cao, K.-W. Park, B. Vyas, Single-crystalline mesoporous molybdenum nitride nanowires with improved electrochemical properties. J. Am. Ceram. Soc. 96(1), 37–39 (2013)

    CAS  Google Scholar 

  37. J. Wang, K. Shang, Y. Guo, W.-C. Li, Easy hydrothermal synthesis of external mesoporous γ-Al2O3 nanorods as excellent supports for Au nanoparticles in CO oxidation. Microporous Mesoporous Mater. 181, 141–145 (2013)

    CAS  Google Scholar 

  38. Z. Bai, X. Zhang, Y. Zhang, C. Guo, B. Tang, Facile synthesis of mesoporous Mn3O4 nanorods as a promising anode material for high performance lithium-ion batteries. J. Mater. Chem. A 2(39), 16755–16760 (2014)

    CAS  Google Scholar 

  39. C. Yuan, L. Zhang, L. Hou, G. Pang, X. Zhang, Green template-free synthesis of mesoporous ternary CoNi-Mn oxide nanowires towards high-performance electrochemical capacitors. Part. Part. Syst. Char. 31(7), 778–787 (2014)

    CAS  Google Scholar 

  40. J. Wang, J. Xie, Y. Jiang, J. Zhang, Y. Wang, Z. Zhou, Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium-ion batteries. J. Mater. Sci. 50(19), 6321–6328 (2015)

    CAS  Google Scholar 

  41. X. Xu, C. Cao, Y. Zhu, Facile synthesis of single crystalline mesoporous hematite nanorods with enhanced supercapacitive performance. Electrochim Acta 155, 257–262 (2015)

    CAS  Google Scholar 

  42. Y. Zhai, X. Ma, H. Mao, W. Shao, L. Xu, Y. He, Y. Qian, Mn-doped α-FeOOH nanorods and α-Fe2O3 mesoporous nanorods: facile synthesis and applications as high performance anodes for LIBs. Adv. Electron. Mater. 1(6), 1400057 (2015). https://doi.org/10.1002/aelm.201400057

    Article  CAS  Google Scholar 

  43. G. Liu, X. Gao, K. Wang, D. He, J. Li, Uniformly mesoporous NiO/NiFe2O4 biphasic nanorods as efficient oxygen evolving catalyst for water splitting. Int. J. Hydrogen Energy 41(40), 17976–21798 (2016)

    CAS  Google Scholar 

  44. M. Chen, W. Zhou, M. Qi, J. Yin, X. Xia, Q. Chen, Exploring highly porous Co2P nanowire arrays for electrochemical energy storage. J. Power Sources 342, 964–969 (2017)

    CAS  Google Scholar 

  45. Z. Qin, Q. Cheng, Y. Lu, J. Li, Facile synthesis of hierarchically mesoporous NiCo2O4 nanowires for sensitive nonenzymatic glucose detection. Appl. Phys. A-Mater. 123(7), 492 (2017)

    Google Scholar 

  46. Y. Cheng, W. Meng, Z. Li, H. Zhao, J. Cao, Y. Du, G. Ji, Towards outstanding dielectric consumption derived from designing one-dimensional mesoporous MoO2/C hybrid heteronanowires. J. Mater. Chem. C 5(35), 8981–8987 (2017)

    Google Scholar 

  47. J. Dong, Y. Jiang, Q. Li, Q. Wei, W. Yang, S. Tan, X. Xu, Q. An, L. Mai, Pseudocapacitive titanium oxynitride mesoporous nanowires with iso-oriented nanocrystals for ultrahigh-rate sodium ion hybrid capacitors. J. Mater. Chem. A 5(22), 10827–10835 (2017)

    CAS  Google Scholar 

  48. P.L. Quang, N.D. Cuong, T.T. Hoa, H.T. Long, C.M. Hung, D.T.T. Le, N.V. Hieu, Simple post-synthesis of mesoporous p-type Co3O4 nanochains for enhanced H2S gas sensing performance. Sens. Actuators B 270, 158–166 (2018)

    CAS  Google Scholar 

  49. Y. Jing, H. Liu, R. Yan, J. Chen, H. Dai, C. Liu, X.-D. Zhang, Mesoporous CoP nanowire arrays for hydrogen evolution. ACS Appl. Nano. Mater. 2(9), 5922–5930 (2019)

    CAS  Google Scholar 

  50. L. Hu, Z. Tang, Z. Zhang, Hydrothermal synthesis of single crystal mesoporous LiAlO2 nanobelts. Mater. Lett. 62(12–13), 2039–2042 (2008)

    CAS  Google Scholar 

  51. D. Wang, F. Zhou, C. Wang, W. Liu, Synthesis and characterization of silver nanoparticle loaded mesoporous TiO2 nanobelts. Microporous Mesoporous Mater. 116(1–3), 658–664 (2008)

    CAS  Google Scholar 

  52. Y. Wang, H. Xia, L. Lu, J. Lin, Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO3)0.5(OH)0.11 H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. ACS Nano 4(3), 1425–1432 (2010)

    Google Scholar 

  53. Q. Xiao, L. Ouyang, L. Gao, C. Yao, Preparation and visible light photocatalytic activity of mesoporous N, S-codoped TiO2(B) nanobelts. Appl. Surf. Sci. 257(8), 3652–3656 (2011)

    CAS  Google Scholar 

  54. H. Huang, W. Zhu, X. Tao, Y. Xia, Z. Yu, J. Fang, Y. Gan, W. Zhang, Nanocrystal-constructed mesoporous single-crystalline Co3O4 nanobelts with superior rate capability for advanced lithium-ion batteries. ACS Appl. Mater. Interfaces 4(11), 5974–5980 (2012)

    CAS  Google Scholar 

  55. L. Nasi, D. Calestani, F. Fabbri, P. Ferro, T. Besagni, P. Fedeli, F. Licci, R. Mosca, Mesoporous single-crystal ZnO nanobelts: supported preparation and patterning. Nanoscale 5(3), 1060–1066 (2013)

    CAS  Google Scholar 

  56. R. Rao, M. Yang, Q. Ling, Q. Zhang, H. Liu, A. Zhang, W. Chen, Mesoporous CeO2 nanobelts synthesized by a facile hydrothermal route via controlling cationic type and concentration of alkali. Microporous Mesoporous Mater. 169, 81–87 (2013)

    CAS  Google Scholar 

  57. Q. Wang, Y. Xia, C. Jiang, Mesoporous nanobelts and nano-necklaces of Co3O4converted from β-Co(OH)2nanobelts via a thermal decomposition route for the electrocatalytic oxidation of H2O2. CrystEngComm 16(41), 9721–9726 (2014)

    CAS  Google Scholar 

  58. A.K. Mondal, D. Su, S. Chen, X. Xie, G. Wang, Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl. Mater. Interfaces 6(17), 14827–14835 (2014)

    CAS  Google Scholar 

  59. B. Gao, X. Xiao, J. Su, X. Zhang, X. Peng, J. Fu, P.K. Chu, Synthesis of mesoporous niobium nitride nanobelt arrays and their capacitive properties. Appl. Surf. Sci. 383, 57–63 (2016)

    CAS  Google Scholar 

  60. C. Huang, J. Fu, H. Song, X. Li, X. Peng, B. Gao, X. Zhang, P.K. Chu, General fabrication of mesoporous Nb2O5 nanobelts for lithium ion battery anodes. RSC Adv. 6(93), 90489–90493 (2016)

    CAS  Google Scholar 

  61. F. Fabbri, L. Nasi, P. Fedeli, P. Ferro, G. Salviati, R. Mosca, A. Calzolari, A. Catellani, S-induced modifications of the optoelectronic properties of ZnO mesoporous nanobelts. Sci. Rep. 6(1), 27948 (2016)

    CAS  Google Scholar 

  62. Y. Jin, C. Zhao, L. Wang, Q. Jiang, C. Ji, X. He, Preparation of mesoporous Ni2P nanobelts with high performance for electrocatalytic hydrogen evolution and supercapacitor. Int. J. Hydrogen Energy 43(7), 3697–3704 (2018)

    CAS  Google Scholar 

  63. P. Li, Q. Cao, D. Zheng, A.A. Alshehri, Y.G. Alghamidi, K.A. Alzahrani, M. Kim, J. Hou, L. Lai, Y. Yamauchi, Y. Ide, Y. Bando, J. Kim, V. Malgras, J. Lin, Synthesis of mesoporous TiO2-B nanobelts with highly crystalized walls toward efficient H2 evolution. Nanomaterials (Basel) 9(7), 919 (2019)

    CAS  Google Scholar 

  64. L. Hou, L. Yang, J. Li, J. Tan, C. Yuan, Efficient sunlight-induced methylene blue removal over one-dimensional mesoporous monoclinic BiVO4 nanorods. J. Anal. Methods Chem. 2012, 1–9 (2012)

    Google Scholar 

  65. K.Y. Kumar, H.B. Muralidhara, Y.A. Nayaka, J. Balasubramanyam, H. Hanumanthappa, Hierarchically assembled mesoporous ZnO nanorods for the removal of lead and cadmium by using differential pulse anodic stripping voltammetric method. Powder Technol. 239, 208–216 (2013)

    CAS  Google Scholar 

  66. S.-q Guo, T.-z Jing, X. Zhang, X.-b Yang, Z.-h Yuan, F.-z Hu, Mesoporous Bi2S3 nanorods with graphene-assistance as low-cost counter-electrode materials in dye-sensitized solar cells. Nanoscale 6(23), 14433–14440 (2014)

    CAS  Google Scholar 

  67. Z. Li, J. Han, L. Fan, M. Wang, S. Tao, R. Guo, The anion exchange strategy towards mesoporous α-Ni(OH)2 nanowires with multinanocavities for high-performance supercapacitors. Chem. Commun. 51(15), 3053–3056 (2015)

    CAS  Google Scholar 

  68. G. Chen, Q. Xu, Y. Yang, C. Li, T. Huang, G. Sun, S. Zhang, D. Ma, X. Li, Facile and mild strategy to construct mesoporous CeO2–CuO nanorods with enhanced catalytic activity toward CO oxidation. ACS Appl. Mater. Interfaces 7(42), 23538–23544 (2015)

    CAS  Google Scholar 

  69. G. Liu, X. Gao, K. Wang, D. He, J. Li, Mesoporous nickel–iron binary oxide nanorods for efficient electrocatalytic water oxidation. Nano Res. 10(6), 2096–2105 (2017)

    CAS  Google Scholar 

  70. Z. Guo, Y. Su, Y.X. Li, G. Li, X.J. Huang, Porous single-crystalline CdSe nanobelts: cation-exchange synthesis and highly selective photoelectric sensing toward Cu2+. Chem. Eur. J. 24(39), 9877–9883 (2018)

    CAS  Google Scholar 

  71. D. Li, Y. Xia, Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16(14), 1151–1170 (2004)

    CAS  Google Scholar 

  72. C.-L. Zhang, S.-H. Yu, Nanoparticles meet electrospinning: recent advances and future prospects. Chem. Soc. Rev. 43(13), 4423–4448 (2014)

    CAS  Google Scholar 

  73. Y. Xu, Y. Zhu, F. Han, C. Luo, C. Wang, 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries. Adv. Energy Mater. 5(1), 1400753 (2015)

    Google Scholar 

  74. X. Sun, Q. Lang, H. Zhang, L. Cheng, Y. Zhang, G. Pan, X. Zhao, H. Yang, Y. Zhang, H.A. Santos, Electrospun photocrosslinkable hydrogel fibrous scaffolds for rapid in vivo vascularized skin flap regeneration. Adv. Funct. Mater. 27(2), 1604617 (2017)

    Google Scholar 

  75. D. Li, J.T. McCann, Y. Xia, M. Marquez, Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J. Am. Ceram. Soc. 89(6), 1861–1869 (2006)

    CAS  Google Scholar 

  76. H. Chen, J. Di, N. Wang, H. Dong, J. Wu, Y. Zhao, J. Yu, L. Jiang, Fabrication of hierarchically porous inorganic nanofibers by a general microemulsion electrospinning approach. Small 7(13), 1779–1783 (2011)

    Google Scholar 

  77. X. Peng, A.C. Santulli, E. Sutter, S.S. Wong, Fabrication and enhanced photocatalytic activity of inorganic core–shell nanofibers produced by coaxial electrospinning. Chem. Sci. 3(4), 1262–1272 (2012)

    CAS  Google Scholar 

  78. H. Hou, F. Gao, G. Wei, M. Wang, J. Zheng, B. Tang, W. Yang, Electrospinning 3C-SiC mesoporous fibers with high purities and well-controlled structures. Cryst. Growth Des. 12(1), 536–539 (2012)

    CAS  Google Scholar 

  79. H. Hou, C. Dong, L. Wang, Gao, G. Wei, J. Zheng, X. Cheng, B. Tang, W. Yang, Electrospinning graphite/SiC mesoporous hybrid fibers with tunable structures. CrystEngComm 15(10), 2002 (2013)

    Google Scholar 

  80. H. Hou, L. Wang, F. Gao, G. Wei, J. Zheng, B. Tang, W. Yang, Fabrication of porous titanium dioxide fibers and their photocatalytic activity for hydrogen evolution. Int. J. Hydrogen Energy 39(13), 6837–6844 (2014)

    CAS  Google Scholar 

  81. S.-J. Kim, S.-J. Choi, J.-S. Jang, N.-H. Kim, M. Hakim, H.L. Tuller, I.-D. Kim, Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS Nano 10(6), 5891–5899 (2016)

    CAS  Google Scholar 

  82. D.J. Lee, H. Lee, M.-H. Ryou, G.-B. Han, J.-N. Lee, J. Song, J. Choi, K.Y. Cho, Y.M. Lee, J.-K. Park, Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries. ACS Appl. Mater. Interfaces 5(22), 12005–12010 (2013)

    CAS  Google Scholar 

  83. J. Wang, L. Shen, H. Li, B. Ding, P. Nie, H. Dou, X. Zhang, Mesoporous Li4Ti5O12/carbon nanofibers for high-rate lithium-ion batteries. J. Alloys Compd. 587, 171–176 (2014)

    CAS  Google Scholar 

  84. H. Hou, L. Wang, F. Gao, G. Wei, B. Tang, W. Yang, T. Wu, General strategy for fabricating thoroughly mesoporous nanofibers. J. Am. Chem. Soc. 136(48), 16716–16719 (2014)

    CAS  Google Scholar 

  85. X. Ren, H. Hou, Z. Liu, F. Gao, J. Zheng, L. Wang, W. Li, P. Ying, W. Yang, T. Wu, Shape-enhanced photocatalytic activities of thoroughly mesoporous ZnO nanofibers. Small 12(29), 4007–4017 (2016)

    CAS  Google Scholar 

  86. H. Hou, F. Gao, M. Shang, L. Wang, J. Zheng, Q. liu, Z. Yang, J. Xu, W. Yang, Enhanced visible-light responsive photocatalytic activity of N-doped TiO2 thoroughly mesoporous nanofibers. J. Mater. Sci. Mater. Electron. 28(4), 3796–3805 (2016)

    Google Scholar 

  87. Y. Yang, Y. Zhu, X. Ye, K. Zhou, P. Li, H. Chen, Y. Dan, W. Yang, H. Hou, One-dimensional mesoporous anatase-TiO2/rutile-TiO2/ZnTiO3 triphase heterojunction with boosted photocatalytic hydrogen production activity. Catal. Lett. (2020). https://doi.org/10.1007/s10562-020-03322-9

    Article  Google Scholar 

  88. H. Hou, F. Gao, L. Wang, M. Shang, Z. Yang, J. Zheng, W. Yang, Superior thoroughly mesoporous ternary hybrid photocatalysts of TiO2/WO3/g-C3N4 nanofibers for visible-light-driven hydrogen evolution. J. Mater. Chem. A 4(17), 6276–6281 (2016)

    CAS  Google Scholar 

  89. H. Hou, M. Shang, F. Gao, L. Wang, Q. Liu, J. Zheng, Z. Yang, W. Yang, Highly efficient photocatalytic hydrogen evolution in ternary hybrid TiO2/CuO/Cu thoroughly mesoporous nanofibers. ACS Appl. Mater. Interfaces 8(31), 20128–20137 (2016)

    CAS  Google Scholar 

  90. H. Liu, H. Hou, F. Gao, X. Yao, W. Yang, Tailored fabrication of thoroughly mesoporous BiVO4 nanofibers and their visible-light photocatalytic activities. ACS Appl. Mater. Interfaces 8(3), 1929–1936 (2016)

    CAS  Google Scholar 

  91. Y. Liu, W. Yang, X. He, H. Hou, Tailored synthesis of amorphous SiCNO mesoporous fibers through combining a facile electrospinning process and microwave-assisted pyrolysis. Ceram. Int. 45(7), 8640–8645 (2019)

    CAS  Google Scholar 

  92. A. Yang, X. Tao, G.K.H. Pang, K.G.G. Siu, Preparation of porous tin oxide nanobelts using the electrospinning technique. J. Am. Ceram. Soc. 91(1), 257–262 (2007)

    Google Scholar 

  93. S. Li, Y. Zhao, C. Wang, D. Li, K. Gao, Fabrication and characterization unique ribbon-like porous Ag/LaFeO3 nanobelts photocatalyst via electrospinning. Mater. Lett. 170, 122–125 (2016)

    CAS  Google Scholar 

  94. G. Yang, L. Wang, J. Wang, W. Yan, Fabrication and formation mechanism of Li2MnO3 ultrathin porous nanobelts by electrospinning. Ceram. Int. 43(1), 71–76 (2017)

    CAS  Google Scholar 

  95. M. Zhao, S. Fan, J. Liang, Y. Liu, Y. Li, J. Chen, S. Chen, Synthesis of mesoporous grooved ZnFe2O4 nanobelts as peroxidase mimetics for improved enzymatic biosensor. Ceram. Int. 41(9), 10400–10405 (2015)

    CAS  Google Scholar 

  96. H. Liu, W. Yang, L. Wang, H. Hou, F. Gao, Electrospun BiVO4 nanobelts with tailored structures and their enhanced photocatalytic/photoelectrocatalytic activities. CrystEngComm 19(42), 6252–6258 (2017)

    CAS  Google Scholar 

  97. K. Song, F. Gao, W. Yang, E. Wang, Z. Wang, H. Hou, WO3 mesoporous nanobelts towards efficient photoelectrocatalysts for water splitting. ChemElectroChem 5(2), 322–332 (2018)

    CAS  Google Scholar 

  98. S. Madhugiri, B. Sun, P.G. Smirniotis, J.P. Ferraris, K.J. Balkus, Electrospun mesoporous titanium dioxide fibers. Microporous Mesoporous Mater. 69(1–2), 77–83 (2004)

    CAS  Google Scholar 

  99. J.-Y. Chen, H.-C. Chen, J.-N. Lin, C. Kuo, Effects of polymer media on electrospun mesoporous titania nanofibers. Mater. Chem. Phys. 107(2–3), 480–487 (2008)

    CAS  Google Scholar 

  100. R. Liu, Y. Huang, A. Xiao, H. Liu, Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers. J. Alloys Compd. 503(1), 103–110 (2010)

    CAS  Google Scholar 

  101. B.-H. Kim, K.S. Yang, J.P. Ferraris, Highly conductive, mesoporous carbon nanofiber web as electrode material for high-performance supercapacitors. Electrochim. Acta 75, 325–333 (2012)

    CAS  Google Scholar 

  102. J. Li, H. Qiao, Y. Du, C. Chen, X. Li, J. Cui, D. Kumar, Q. Wei, Electrospinning synthesis and photocatalytic activity of mesoporous TiO2 nanofibers. Sci. World J. 2012, 1–7 (2012)

    Google Scholar 

  103. P. Wang, D. Zhang, F. Ma, Y. Ou, Q.N. Chen, S. Xie, J. Li, Mesoporous carbon nanofibers with a high surface area electrospun from thermoplastic polyvinylpyrrolidone. Nanoscale 4(22), 7199–7204 (2012)

    CAS  Google Scholar 

  104. B. Zhao, R. Cai, S. Jiang, Y. Sha, Z. Shao, Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries. Electrochim. Acta 85, 636–643 (2012)

    CAS  Google Scholar 

  105. F.H. Bijarbooneh, Y. Zhao, Z. Sun, Y.-U. Heo, V. Malgras, J.H. Kim, S.X. Dou, Structurally stabilized mesoporous TiO2 nanofibers for efficient dye-sensitized solar cells. APL Mater. 1(3), 032106 (2013)

    Google Scholar 

  106. K.-C. Hsu, J.-D. Liao, J.-R. Yang, Y.-S. Fu, Cellulose acetate assisted synthesis and characterization of kesterite quaternary semiconductor Cu2ZnSnS4 mesoporous fibers by an electrospinning process. CrystEngComm 15(21), 4303–4308 (2013)

    CAS  Google Scholar 

  107. S.S. Mali, H. Kim, W.Y. Jang, H.S. Park, P.S. Patil, C.K. Hong, Novel synthesis and characterization of mesoporous ZnO nanofibers by electrospinning technique. ACS Sustain. Chem. Eng. 1(9), 1207–1213 (2013)

    CAS  Google Scholar 

  108. P. Singh, K. Mondal, A. Sharma, Reusable electrospun mesoporous ZnO nanofiber mats for photocatalytic degradation of polycyclic aromatic hydrocarbon dyes in wastewater. J. Colloid. Sci. 394, 208–215 (2013)

    CAS  Google Scholar 

  109. G. Liu, S. Liu, Q. Lu, H. Sun, Z. Xiu, Synthesis of mesoporous BiPO4 nanofibers by electrospinning with enhanced photocatalytic performances. Ind. Eng. Chem. Res. 53(33), 13023–13029 (2014)

    CAS  Google Scholar 

  110. Z. Liu, D. Fu, F. Liu, G. Han, C. Liu, Y. Chang, Y. Xiao, M. Li, S. Li, Mesoporous carbon nanofibers with large cage-like pores activated by tin dioxide and their use in supercapacitor and catalyst support. Carbon 70, 295–307 (2014)

    CAS  Google Scholar 

  111. K. Mondal, M.A. Ali, V.V. Agrawal, B.D. Malhotra, A. Sharma, Highly sensitive biofunctionalized mesoporous electrospun TiO2 nanofiber based interface for biosensing. ACS Appl. Mater. Interfaces 6(4), 2516–2527 (2014)

    CAS  Google Scholar 

  112. L. Wu, J. Lang, R. Wang, R. Guo, X. Yan, Electrospinning synthesis of mesoporous MnCoNiOx@double-carbon nanofibers for sodium-ion battery anodes with pseudocapacitive behavior and long cycle life. ACS Appl. Mater. Interfaces 8(50), 34342–34352 (2016)

    CAS  Google Scholar 

  113. H. Chen, G.-D. Li, M. Fan, Q. Gao, J. Hu, S. Ao, C. Wei, X. Zou, Electrospinning preparation of mesoporous spinel gallate (MGa2O4; MNi, Cu, Co) nanofibers and their M(II) ions-dependent gas sensing properties. Sens. Actuators B 240, 689–696 (2017)

    CAS  Google Scholar 

  114. A.A. Nada, M. Nasr, R. Viter, P. Miele, R. Sp, M. Bechelany, Mesoporous ZnFe2O4@ TiO2 nanofibers prepared by electrospinning coupled to PECVD as highly performing photocatalytic materials. J. Phys. Chem. C 121(44), 24669–24677 (2017)

    CAS  Google Scholar 

  115. T. Jin, Y. Liu, Y. Li, K. Cao, X. Wang, L. Jiao, Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life na-ion batteries. Adv. Energy Mater. 7(15), 1700087 (2017)

    Google Scholar 

  116. G.-H. An, D.-Y. Lee, H.-J. Ahn, Tunneled mesoporous carbon nanofibers with embedded ZnO nanoparticles for ultrafast lithium storage. ACS Appl. Mater. Interfaces 9(14), 12478–12485 (2017)

    CAS  Google Scholar 

  117. Z. Cao, C. Wang, J. Chen, Novel mesoporous carbon nanofibers prepared via electrospinning method as host materials for Li-S battery. Mater. Lett. 225, 157–160 (2018)

    CAS  Google Scholar 

  118. H. Liu, Y. Liu, 1D mesoporous NaTi2(PO4)3/carbon nanofiber: the promising anode material for sodium-ion batteries. Ceram. Int. 44(5), 5813–5816 (2018)

    CAS  Google Scholar 

  119. Z. Yu, C. Xu, K. Yuan, X. Gan, H. Zhou, X. Wang, L. Zhu, G. Zhang, D. Xu, Template-free synthesis of MgO mesoporous nanofibers with superior adsorption for fluoride and Congo red. Ceram. Int. 44(8), 9454–9462 (2018)

    CAS  Google Scholar 

  120. J. Zhou, M. Ikram, A.U. Rehman, J. Wang, Y. Zhao, K. Kan, W. Zhang, F. Raziq, L. Li, K. Shi, Highly selective detection of NH3 and H2S using the pristine CuO and mesoporous In2O3@CuO multijunctions nanofibers at room temperature. Sens. Actuators B 255, 1819–1830 (2018)

    CAS  Google Scholar 

  121. M. Yu, C. Shang, G. Ma, Q. Meng, Z. Chen, M. Jin, L. Shui, Y. Zhang, Z. Zhang, M. Yuan, X. Wang, G. Zhou, Synthesis and characterization of mesoporous BiVO4 nanofibers with enhanced photocatalytic water oxidation performance. Appl. Surf. Sci. 481, 255–261 (2019)

    CAS  Google Scholar 

  122. L. Yao, E. Guo, M. Wei, Q. Wang, Q. Lu, Electrospun mesoporous InVO4/TiO2 nanobelts with enhanced photocatalytic properties. Photochem. Photobiol. 95(5), 1122–1130 (2019)

    CAS  Google Scholar 

  123. K. Yuan, X. Jin, C. Xu, X. Wang, Manipulation of electrospun mesoporous zirconia nanofiber with enhanced surface area and catalytic property. Ceram. Int. 45(10), 13414–13421 (2019)

    CAS  Google Scholar 

  124. F.K. Mahar, L. He, K. Wei, M. Mehdi, M. Zhu, J. Gu, K. Zhang, Z. Khatri, I. Kim, Rapid adsorption of lead ions using porous carbon nanofibers. Chemosphere 225, 360–367 (2019)

    CAS  Google Scholar 

  125. S. Zhan, J. Yang, Y. Liu, N. Wang, J. Dai, H. Yu, X. Gao, Y. Li, Mesoporous Fe2O3-doped TiO2 nanostructured fibers with higher photocatalytic activity. J. Colloid Sci. 355(2), 328–333 (2011)

    CAS  Google Scholar 

  126. J. Choi, A. Ide, Y.B. Truong, I.L. Kyratzis, R.A. Caruso, High surface area mesoporous titanium–zirconium oxide nanofibrous web: a heavy metal ion adsorbent. J. Mater. Chem. A 1(19), 5847–5853 (2013)

    CAS  Google Scholar 

  127. Y. Dong, H. Lin, Q. Jin, L. Li, D. Wang, D. Zhou, F. Qu, Synthesis of mesoporous carbon fibers with a high adsorption capacity for bulky dye molecules. J. Mater. Chem. A 1(25), 7391–7398 (2013)

    CAS  Google Scholar 

  128. S. Zhan, Y. Yang, X. Gao, H. Yu, S. Yang, D. Zhu, Y. Li, Rapid degradation of toxic toluene using novel mesoporous SiO2 doped TiO2 nanofibers. Catal. Today 225, 10–17 (2014)

    CAS  Google Scholar 

  129. Y. Wang, X. Wen, J. Chen, S. Wang, Foamed mesoporous carbon/silicon composite nanofiber anode for lithium ion batteries. J. Power Sources 281, 285–292 (2015)

    CAS  Google Scholar 

  130. X. Yang, Z. Chen, J. Zhao, L. Yu, H. Li, W. Chai, J. You, Fabrication of mesoporous H3PW12O40/TiO2 composite nanofibers via self-assembly of PS-b-PEO and photocatalytic performance of the resultant fabrics. Compos. Commun. 13, 125–128 (2019)

    Google Scholar 

  131. Y.P. Lin, Y.Y. Chen, Y.C. Lee, Y.W. Chen-Yang, Effect of wormhole-like mesoporous anatase TiO2 nanofiber prepared by electrospinning with ionic liquid on dye-sensitized solar cells. J. Phys. Chem. C 116(24), 13003–13012 (2012)

    CAS  Google Scholar 

  132. Y. Zhang, B. Jiang, M. Yuan, P. Li, X. Zheng, Humidity sensing and dielectric properties of mesoporous Bi3.25La0.75Ti3O12 nanorods. Sens. Actuators B 237, 41–48 (2016)

    CAS  Google Scholar 

  133. P. Aghasiloo, M. Yousefzadeh, M. Latifi, R. Jose, Highly porous TiO2 nanofibers by humid-electrospinning with enhanced photocatalytic properties. J. Alloys Compd. 790, 257–265 (2019)

    CAS  Google Scholar 

  134. M.S. Sander, M.J. Cote, W. Gu, B.M. Kile, C.P. Tripp, Template‐assisted fabrication of dense, aligned arrays of titania nanotubes with well‐controlled dimensions on substrates. Adv. Mater. 16(22), 2052–2057 (2004)

    Google Scholar 

  135. S.J. Hurst, E.K. Payne, L. Qin, C.A. Mirkin, Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew. Chem. Int. Ed. 45(17), 2672–2692 (2006)

    CAS  Google Scholar 

  136. H. Kloust, R. Zierold, J.-P. Merkl, C. Schmidtke, A. Feld, E. Pöselt, A. Kornowski, K. Nielsch, H. Weller, Synthesis of iron oxide nanorods using a template mediated approach. Chem. Mater. 27(14), 4914–4917 (2015)

    CAS  Google Scholar 

  137. Y. Xiao, L. Li, Y. Li, M. Fang, L. Zhang, Synthesis of mesoporous ZnO nanowires through a simple in situ precipitation method. Nanotechnology 16(6), 671–674 (2005)

    CAS  Google Scholar 

  138. W. Liu, Y. Xie, T. Chen, Q. Lu, S. Ur Rehman, L. Zhu, Rationally designed mesoporous In2O3 nanofibers functionalized Pt catalysts for high-performance acetone gas sensors. Sens. Actuators B 298, 126871 (2019)

    Google Scholar 

  139. H. Luo, Q. Lin, S. Baber, M. Naalla, Surfactant-templated mesoporous metal oxide nanowires. J. Nanomater. 2010, 1–6 (2010)

    Google Scholar 

  140. B. Li, Y. Chen, H. Zhao, X. Pei, L. Bi, K. Hanabusa, Y. Yang, From branched self-assemblies to branched mesoporous silica nanoribbons. Chem. Commun. 47, 636 (2008)

    Google Scholar 

  141. Q. Zhang, F. Lü, C. Li, Y. Wang, H. Wan, An efficient synthesis of helical mesoporous silica nanorods. Chem. Lett. 35(2), 190–191 (2006)

    CAS  Google Scholar 

  142. L. Li, X. Huang, T. Liu, H. Liu, N. Hao, D. Chen, Y. Zhang, L. Li, F. Tang, Overcoming multidrug resistance with mesoporous silica nanorods as nanocarrier of doxorubicin. J. Nanosci. Nanotechnol. 12(6), 4458–4466 (2012)

    CAS  Google Scholar 

  143. X. Ren, Z. Lun, Mesoporous silica nanowires synthesized by electrodeposition in AAO. Mater. Lett. 68, 228–229 (2012)

    CAS  Google Scholar 

  144. J. Chen, L. Yang, S. Rousidan, S. Fang, Z. Zhang, S.-i Hirano, Facile fabrication of Si mesoporous nanowires for high-capacity and long-life lithium storage. Nanoscale 5(21), 10623–10628 (2013)

    CAS  Google Scholar 

  145. H. Kim, J. Cho, Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J. Mater. Chem. 18(7), 771–775 (2008)

    Google Scholar 

  146. X.-H. Li, X. Wang, M. Antonietti, Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 3(6), 2170–2174 (2012)

    CAS  Google Scholar 

  147. T. Xue, X. Wang, J.-M. Lee, Dual-template synthesis of Co(OH)2 with mesoporous nanowire structure and its application in supercapacitor. J. Power Sources 201, 382–438 (2012)

    CAS  Google Scholar 

  148. T. Xue, J.-M. Lee, Capacitive behavior of mesoporous Co(OH)2 nanowires. J. Power Sources 245, 194–202 (2014)

    CAS  Google Scholar 

  149. L. Yao, K. Kan, Y. Lin, J. Song, J. Wang, J. Gao, P. Shen, L. Li, K. Shi, Si doped highly crystalline mesoporous In2O3 nanowires: synthesis, characterization and ultra-high response to NOx at room temperature. RSC Adv. 5(20), 15515–15523 (2015)

    CAS  Google Scholar 

  150. A.U. Rehman, J. Zhang, J. Zhou, K. Kan, L. Li, K. Shi, Synthesis of mesoporous K2O-In2O3 nanowires and NO x gas sensitive performance study in room temperature. Microporous Mesoporous Mater. 240, 50–56 (2017)

    CAS  Google Scholar 

  151. X. Li, D. Li, J. Xu, H. Jin, D. Jin, X. Peng, B. Hong, J. Li, Y. Yang, H. Ge, Calcination-temperature-dependent gas-sensing properties of mesoporous nickel oxides nanowires as ethanol sensors. Powder Technol. 318, 40–45 (2017)

    CAS  Google Scholar 

  152. S.-H. Li, F.-F. Meng, Z. Chu, T. Luo, F.-M. Peng, Z. Jin, Mesoporous SnO2 nanowires: synthesis and ethanol sensing properties. Adv. Condens. Matter. Phys. 2017, 9720973 (2017)

    Google Scholar 

  153. X. Li, D. Li, J. Xu, Y. Han, H. Jin, B. Hong, H. Ge, X. Wang, Calcination-temperature-dependent gas-sensing properties of mesoporous α-Fe2O3 nanowires as ethanol sensors. Solid State Sci. 69, 38–43 (2017)

    CAS  Google Scholar 

  154. A.I. Hochbaum, D. Gargas, Y.J. Hwang, P. Yang, Single crystalline mesoporous silicon nanowires. Nano Lett. 9(10), 3550–3554 (2009)

    Google Scholar 

  155. W.K. To, C.H. Tsang, H.H. Li, Z. Huang, Fabrication of n-type mesoporous silicon nanowires by one-step etching. Nano Lett. 11(12), 5252–5258 (2011)

    CAS  Google Scholar 

  156. L. Lin, S. Guo, X. Sun, J. Feng, Y. Wang, Synthesis and photoluminescence properties of porous silicon nanowire arrays. Nanoscale Res. Lett. 5(11), 1822–1828 (2010)

    CAS  Google Scholar 

  157. Y. Qu, X. Zhong, Y. Li, L. Liao, Y. Huang, X. Duan, Photocatalytic properties of porous silicon nanowires. J. Mater. Chem. 20(18), 3590–3594 (2010)

    CAS  Google Scholar 

  158. Y. Chen, L. Liu, J. Xiong, T. Yang, Y. Qin, C. Yan, Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries. Adv. Funct. Mater. 25(43), 6701–6709 (2015)

    CAS  Google Scholar 

  159. F. Bai, M. Li, D. Song, H. Yu, B. Jiang, Y. Li, One-step synthesis of lightly doped porous silicon nanowires in HF/AgNO3/H2O2 solution at room temperature. J. Solid State Chem. 196, 596–600 (2012)

    CAS  Google Scholar 

  160. J. Liu, Z. Huang, Anion F—induced etching of silicon nanowires with diverse doping levels, surface crystalline orientations, and porosity. J. Phys. Chem. C 118(31), 17870–17877 (2014)

    CAS  Google Scholar 

  161. R.R. Devarapalli, S. Szunerits, Y. Coffinier, M.V. Shelke, R. Boukherroub, Glucose-derived porous carbon-coated silicon nanowires as efficient electrodes for aqueous micro-supercapacitors. ACS Appl. Mater. Interfaces 8(7), 4298–4302 (2016)

    CAS  Google Scholar 

  162. S. Ashrafabadi, H. Eshghi, Synthesis and characterization of n-type lightly doped mesoporous silicon nanowires through 1-MACE, influence of etching solution temperature. J. Mater. Sci. Mater. Electron. 29(8), 6470–6476 (2018)

    CAS  Google Scholar 

  163. C. Chiappini, X. Liu, J.R. Fakhoury, M. Ferrari, Biodegradable porous silicon barcode nanowires with defined geometry. Adv. Funct. Mater. 20(14), 2231–2239 (2010)

    CAS  Google Scholar 

  164. B.M. Bang, H. Kim, J.-P. Lee, J. Cho, S. Park, Mass production of uniform-sized nanoporous silicon nanowire anodes via block copolymer lithography. Energy Environ. Sci. 4(9), 3395–3399 (2011)

    CAS  Google Scholar 

  165. A. Najar, A.B. Slimane, M.N. Hedhili, D. Anjum, R. Sougrat, T.K. Ng, B.S. Ooi, Effect of hydrofluoric acid concentration on the evolution of photoluminescence characteristics in porous silicon nanowires prepared by Ag-assisted electroless etching method. J. Appl. Phys. 112(3), 033502 (2012). https://doi.org/10.1063/1.4740051

    Article  CAS  Google Scholar 

  166. S.-l Wu, T. Zhang, R.-t Zheng, G.-a Cheng, Facile morphological control of single-crystalline silicon nanowires. Appl. Surf. Sci. 258(24), 9792–9799 (2012)

    CAS  Google Scholar 

  167. S. Congli, H. Hao, F. Huanhuan, X. Jingjing, C. Yu, J. Yong, J. Zhifeng, S. Xiaosong, Synthesis of porous silicon nano-wires and the emission of red luminescence. Appl. Surf. Sci. 282, 259–263 (2013)

    Google Scholar 

  168. L. Gan, L. Sun, H. He, Z. Ye, Tuning the photoluminescence of porous silicon nanowires by morphology control. J. Mater. Chem. C 2(15), 2668–2673 (2014)

    CAS  Google Scholar 

  169. X. Li, C. Yan, J. Wang, A. Graff, S.L. Schweizer, A. Sprafke, O.G. Schmidt, R.B. Wehrspohn, Stable silicon anodes for lithium-ion batteries using mesoporous metallurgical silicon. Adv. Energy Mater. 5(4), 1401556 (2015)

    Google Scholar 

  170. Q. Yu, H. He, L. Gan, Z. Ye, The defect nature of photoluminescence from a porous silicon nanowire array. RSC Adv. 5(98), 80526–80529 (2015)

    CAS  Google Scholar 

  171. R. Ghosh, P.K. Giri, Efficient visible light photocatalysis and tunable photoluminescence from orientation controlled mesoporous Si nanowires. RSC Adv. 6(42), 35365–35377 (2016)

    CAS  Google Scholar 

  172. D. Jung, S.G. Cho, T. Moon, H. Sohn, Fabrication and characterization of porous silicon nanowires. Electron. Mater. Lett. 12(1), 17–23 (2016)

    CAS  Google Scholar 

  173. J.-M. Chen, C.-Y. Chen, C.P. Wong, C.-Y. Chen, Inherent formation of porous p-type Si nanowires using palladium-assisted chemical etching. Appl. Surf. Sci. 392, 498–550 (2017)

    CAS  Google Scholar 

  174. K. Rajkumar, R. Pandian, A. Sankarakumar, R.T. Rajendra Kumar, Engineering silicon to porous silicon and silicon nanowires by metal-assisted chemical etching: role of Ag size and electron-scavenging rate on morphology control and mechanism. ACS Omega 2(8), 4540–4547 (2017)

    CAS  Google Scholar 

  175. M. Schmerling, D. Fenske, F. Peters, J. Schwenzel, M. Busse, Lithiation behavior of silicon nanowire anodes for lithium-ion batteries: impact of functionalization and porosity. ChemPhysChem 19(1), 123–129 (2018)

    CAS  Google Scholar 

  176. F. Zhang, L. Wan, J. Chen, X. Li, X. Yan, Crossed carbon skeleton enhances the electrochemical performance of porous silicon nanowires for lithium ion battery anode. Electrochim Acta 280, 86–93 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyou Yang .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hou, H., Xu, L., Yang, W., Wong, WY. (2022). Preparation of Mesoporous Inorganic Nanowires, Nanorods, Nanofibers and Nanobelts. In: One-Dimensional Mesoporous Inorganic Nanomaterials. Springer Series in Materials Science, vol 321. Springer, Cham. https://doi.org/10.1007/978-3-030-89105-3_3

Download citation

Publish with us

Policies and ethics