Skip to main content

Voltammetry and In-Situ UV–Vis Absorbance Studies for Understanding Corrosion Mechanisms

  • Chapter
  • First Online:
Recent Developments in Analytical Techniques for Corrosion Research
  • 840 Accesses

Abstract

This chapter will discuss two different techniques viz., (a) voltammetry, and (b) in-situ optical absorbance spectrometry for studying corrosion phenomena of metals and non-metals. The basic principles of different voltammetric techniques such as linear potential sweep voltammetry, cyclic voltammetry, and pulse voltammetry are described. Interpretation of the voltammetry results with reference to various reaction paths such as electrochemical, chemical, and coupled reactions; and different processes such reversible, irreversible, and quasi reversible are discussed. Examples of voltammetric techniques include corrosion of steels and fluorine doped tin oxide (FTO). Basic principles of UV–Vis optical absorbance spectroscopy is discussed. The techniques of carrying out in-situ spectroscopy, and interpretation of results is described with an example of corrosion studies on FTO in different pH conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R.G. Compton, C.E. Banks, Understanding Voltammetry, 2nd edn. (Imperial College Press, 2014), pp. 35–100

    Google Scholar 

  2. L. Eberson, Electron Transfer Reactions in Organic Chemistry (Springer, Berlin, 1987)

    Book  Google Scholar 

  3. J. Franck, Elementary processes of photochemical reactions. Trans. Faraday Soc. 21, 536–542 (1926)

    Article  Google Scholar 

  4. E. Condon, A theory of intensity distribution in band systems. Phys. Rev. 28, 1182–1201 (1926)

    Article  CAS  Google Scholar 

  5. L. Redey, D.R. Vissers, Reference electrode development for molten LiCI-KCI eutectic electrolyte. J. Electrochem. Soc. 128, 2705 (1981)

    Article  Google Scholar 

  6. R. Greef, R. Peat, L.M. Peter, D. Pletcher, J. Robinson, Instrumental Methods in Electrochemistry (Ellis Horwood, London, 1990), pp. 42–228

    Google Scholar 

  7. H. Matsuda, Y. Ayabe, Z. Eectrochem 59, 494 (1955)

    CAS  Google Scholar 

  8. J.E.B. Randles, Trans Faraday Soc. 44, 327 (1948)

    Article  CAS  Google Scholar 

  9. A. Sevcik, Coll. Czech. Chem. Comm. 13, 349 (1958)

    Article  Google Scholar 

  10. R.S. Nicholson, I. Shain, Anal. Chem. 37, 178–190 (1965)

    Article  CAS  Google Scholar 

  11. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 1980)

    Google Scholar 

  12. E.J. Laviron, General Expression of the LSP voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19–28 (1979)

    Article  CAS  Google Scholar 

  13. J. Osteryoung, J.J. O’Dea, J. Electroanal. Chem. 14, 209 (1986)

    Google Scholar 

  14. J.E. Ramon et al., Cem. Concr. Compos. 110, 103590 (2020)

    Article  CAS  Google Scholar 

  15. M. Goldman, C. Tully, J.J. Noël, D.W. Shoesmith, Corros. Sci. 169, 108607 (2020)

    Article  CAS  Google Scholar 

  16. M.A. Dayeb, S.S. Abd El-Rehim, H.H. Hassan, A.H. Shaltot, J. Alloys. Compd. 820, 153428 (2020)

    Google Scholar 

  17. J.D. Tucker et al., Met. Mater. Trans A 50A, 3388 (2019)

    Article  Google Scholar 

  18. J. Pelle, N. Grut, B. Gwinner, M.L. Schlegal, V. Vivier, Electrochim Acta 335, 135578 (2020)

    Google Scholar 

  19. A. Korjenic, K.S. Raja, J. Electrochem. Soc. 166(6), C169–C184 (2019)

    Article  CAS  Google Scholar 

  20. J. Xu, S. Huang, Z. Wang, Solid State Commun. 149, 527 (2009)

    Article  CAS  Google Scholar 

  21. M.A. Deyab, S.T. Keera, Egypt. J. Pet. 21, 31–36 (2012)

    Article  CAS  Google Scholar 

  22. X. Li, P. Zhang, H. Huang, X. Hu, Y. Zhou, F. Yan, RSC Adv. 9, 39055–39063 (2019)

    Article  CAS  Google Scholar 

  23. F.F. Eliyan, A. Alfantazi, Metall. Mater. Trans. B 48(5), 2615–2619 (2017)

    Article  CAS  Google Scholar 

  24. N.A. Al-Mobarak, Chem. Technol. Fuels Oils 48(4), 321–329 (2012)

    Article  CAS  Google Scholar 

  25. V.G. Kytin, J. Bisquert, I. Abayev, A. Zaban, Phys. Rev. B 70, 193304 (2004)

    Google Scholar 

  26. B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, J. Bisquert, J. Am. Chem. Soc. 134, 4294 (2012)

    Article  CAS  Google Scholar 

  27. S.T. Doslü, B.D. Mert, B. Yazıcı, Arab. J. Chem. 11, 1–13 (2018)

    Google Scholar 

  28. Y. Wang, Y. Lin, Nanomaterials 8, 494 (2018)

    Article  Google Scholar 

  29. S. Abaci, B. Nessark, J. Coat. Technol. Res. 12(1), 107–120 (2015)

    Article  CAS  Google Scholar 

  30. R.E.M. Willems, C.H.L. Weijtens, X. de Vries, R. Coehoorn, R.A.J. Janssen, Adv. Energy Mater. 9, 1803677 (2019)

    Google Scholar 

  31. L. Jiang, G. Sun, Z. Zhou, S. Sun, Q.I. Wang, S. Yan, J. Phys. Chem. B, 109, 8774(2005)

    Google Scholar 

  32. D. Mayerstein, A. Treinin, Trans. Faraday Soc. 57, 2104 (1961)

    Article  Google Scholar 

  33. E. Matveeva, J. Electrochem. Soc. 152, H138 (2005)

    Article  CAS  Google Scholar 

  34. M. Marikkannan, V. Vishnukanthan, A. Vijayshankar, J. Mayandi, J. M. Pearce, AIP Advan. 5, 027122 (2015)

    Google Scholar 

  35. A. Beni et al., Electrochim. Acta 179, 411–422 (2015)

    Article  CAS  Google Scholar 

  36. D. Dolezal, T. Bolanca, S.C. Stefanovic, Mat.-wiss.u.werkstofftech, 42 (2011) 229

    Google Scholar 

  37. A.P. Samide, I. Bibicu, Surf. Interface Anal. 40, 944–952 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Raja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raja, K.S. (2022). Voltammetry and In-Situ UV–Vis Absorbance Studies for Understanding Corrosion Mechanisms. In: Toor, I.u. (eds) Recent Developments in Analytical Techniques for Corrosion Research . Springer, Cham. https://doi.org/10.1007/978-3-030-89101-5_3

Download citation

Publish with us

Policies and ethics