Skip to main content

Event-Driven Collision-Free Path Planning for Cooperative Robots in Dynamic Environment

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13014))

Included in the following conference series:

Abstract

This paper presents an event-driven safe collision-free path planning method for robotic manipulator in human-robot cooperation. To meet the rapidity requirement of real-time robotic systems, the event-driven is introduced, and the collision prediction based on kinematics is used to trigger the rapid-exploring random tree (RRT) planner, while the quintic polynomial path planner is used when the event is not triggered. The fast planning and dynamical obstacle avoidance can be then achieved by the combination of quintic polynomial and RRT planner. By introducing the event-driven method, the safe collision-free path planning can be abstracted and standardized in human-robot cooperation. Finally, the simulation results show that the effectiveness of the proposed event-driven quintic-RRT path planning method.

Supported by the National Natural Science Foundation of China (Grant No. 61773351), and the Program for Science & Technology Innovation Talents in Universities of Henan Province (Grant No. 20HASTIT031).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    Article  MathSciNet  Google Scholar 

  2. Zhang, X.M., Han, Q.L.: Event-based \({H}_\infty \) filtering for sampled-data systems. Automatica 51, 55–69 (2015)

    Article  MathSciNet  Google Scholar 

  3. Heemels, W.P.M.H., Johansson, K.H., Tabuada, P.: An introduction to event-triggered and self-triggered control. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 3270–3285 (2012)

    Google Scholar 

  4. Dimarogonas, D.V., Frazzoli, E., Johansson, K.H.: Distributed event-triggered control for multi-agent systems. IEEE Trans. Autom. Control 57(5), 1291–1297 (2012)

    Article  MathSciNet  Google Scholar 

  5. Heemels, W.P.M.H., Donkers, M.C.F., Teel, A.R.: Periodic event-triggered control for linear systems. IEEE Trans. Autom. Control 58(4), 847–861 (2013)

    Article  MathSciNet  Google Scholar 

  6. Zhang, X., Han, Q., Zhang, B.: An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Trans. Ind. Inform. 13(1), 4–16 (2017)

    Article  MathSciNet  Google Scholar 

  7. Dabek, F., Zeldovich, N., Kaashoek, F., Mazières, D., Morris, R.: Event-driven programming for robust software. In: Proceedings of the 10th Workshop on ACM SIGOPS European Workshop: Beyond the PC - EW10, p. 186. ACM Press, Saint-Emilion, France (2002)

    Google Scholar 

  8. Lunze, J., Lehmann, D.: A state-feedback approach to event-based control. Automatica 46(1), 211–215 (2010)

    Article  MathSciNet  Google Scholar 

  9. Zhang, H., Liang, Y., Su, H., Liu, C.: Event-driven guaranteed cost control design for nonlinear systems with actuator faults via reinforcement learning algorithm. IEEE Trans. Syst. Man Cybern. Syst. 50(11), 4135–4150 (2020)

    Article  Google Scholar 

  10. Mu, C., Wang, K., Qiu, T.: Dynamic event-triggering neural learning control for partially unknown nonlinear systems. IEEE Trans. Cybern. 1–14 (2020)

    Google Scholar 

  11. Zhang, Q., Zhao, D., Wang, D.: Event-based robust control for uncertain nonlinear systems using adaptive dynamic programming. IEEE Trans. Neural Netw. Learn. Syst. 29(1), 37–50 (2018)

    Article  MathSciNet  Google Scholar 

  12. Duguleana, M., Barbuceanu, F.G., Teirelbar, A., Mogan, G.: Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning. Robot. Comput. Integrated Manufact. 28(2), 132–146 (2011)

    Google Scholar 

  13. Wang, Q., Wang, Z., Shuai, M.: Trajectory planning for a 6-DoF manipulator used for orthopaedic surgery. Int. J. Intell. Robot. Appl. 4(1), 82–94 (2020)

    Google Scholar 

  14. Weitschat, R., Ehrensperger, J., Maier, M., Aschemann, H.: Safe and efficient human-robot collaboration part I: estimation of human arm motions. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1993–1999. IEEE, Brisbane, QLD (2018)

    Google Scholar 

  15. Liu, H., Wang, L.: Human motion prediction for human-robot collaboration. J. Manufact. Syst. 44, 287–294 (2017)

    Article  Google Scholar 

  16. Mainprice, J., Berenson, D.: Human-robot collaborative manipulation planning using early prediction of human motion. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 299–306. IEEE, Tokyo (2013)

    Google Scholar 

  17. Cheng, Y., Zhao, W., Liu, C., Tomizuka, M.: Human motion prediction using semi-adaptable neural networks. arXiv:1810.00781 (2019)

  18. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings of1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 500–505. Institute of Electrical and Electronics Engineers, St. Louis, MO, USA (1985)

    Google Scholar 

  19. Rodrigues, R.T., Basiri, M., Aguiar, A.P., Miraldo, P.: Low-level active visual navigation: increasing robustness of vision-based localization using potential fields. IEEE Robot. Autom. Lett. 3(3), 2079–2086 (2018)

    Article  Google Scholar 

  20. Lavalle, S.M.: Rapidly-exploring random trees: A new tool for path planning. Annual Res. Rep. 1(1), 1–4 (1998). Department of Computer Science

    Google Scholar 

  21. López, J., Sanchez-Vilariño, P., Cacho, M.D., Guillén, E.L.: Obstacle avoidance in dynamic environments based on velocity space optimization. Robot. Auton. Syst. 131, 103569 (2020)

    Google Scholar 

  22. Hoppe, S., Lou, Z., Hennes, D., Toussaint, M.: Planning approximate exploration trajectories for model-free reinforcement learning in contact-rich manipulation. IEEE Robot. Autom. Lett. 4(4), 4042–4047 (2019)

    Article  Google Scholar 

  23. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhu Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Peng, J., Ding, S., Dong, M., Chen, B. (2021). Event-Driven Collision-Free Path Planning for Cooperative Robots in Dynamic Environment. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89098-8_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89097-1

  • Online ISBN: 978-3-030-89098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics