Skip to main content

Adaptive Echo State Network Robot Control with Guaranteed Parameter Convergence

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13016))

Included in the following conference series:

Abstract

Most existing adaptive neural network (NN) robot control methods suffer from poor convergence performance of network weights, which cannot fully exploit the approximation ability of NNs. A sufficient condition to ensure parameter convergence of NNs in these control methods is termed persistent excitation, which is difficult to be satisfied in practice. In this paper, an adaptive echo state network (ESN) robot control method enhanced by composite learning is proposed for a trajectory tracking problem of robotic arms with multiple degrees of freedom (DoFs), where a chaotic ESN is used to accurately model and compensate for robot uncertainty online. In the proposed method, a generalized prediction error is defined based on memory regressor extension, and both the prediction error and the generalized prediction error emerge into the weight update law of ESNs such that exponential convergence of parameter estimation, implying exponential convergence of trajectory tracking, is guaranteed under a weaker condition termed interval excitation. Simulation results based on a 7-DoF collaborative robot have verified the effectiveness and superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Narendra, K.S.: Neural networks for control theory and practice. Proc. IEEE 84(10), 1385–1406 (1996)

    Article  Google Scholar 

  2. Pan, Y., Liu, Y., Xu, B., Yu, H.: Hybrid feedback feedforward: an efficient design of adaptive neural network control. Neural Netw. 76, 122–134 (2016)

    Article  Google Scholar 

  3. Guo, K., Pan, Y., Yu, H.: Composite learning robot control with friction compensation: a neural network-based approach. IEEE Trans. Industr. Electron. 66(10), 7841–7851 (2018)

    Article  Google Scholar 

  4. Huang, D., Yang, C., Pan, Y., Cheng, L.: Composite learning enhanced neural control for robot manipulator with output error constraints. IEEE Trans. Industr. Inf. 17(1), 209–218 (2019)

    Article  Google Scholar 

  5. Boden, M.: A guide to recurrent neural networks and backpropagation. The Dallas Project (2002)

    Google Scholar 

  6. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5(2), 157–166 (1994)

    Article  Google Scholar 

  7. Pearlmutter, B.A.: Gradient calculations for dynamic recurrent neural networks: a survey. IEEE Trans. Neural Networks 6(5), 1212–1228 (1995)

    Article  Google Scholar 

  8. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks. Technical report GMD Report 148, German National Research Center for Information Technology, Bonn, Germany (2001)

    Google Scholar 

  9. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)

    Article  Google Scholar 

  10. Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009)

    Article  Google Scholar 

  11. Waegeman, T., Wyffels, F., Schrauwen, B.: Feedback control by online learning an inverse model. IEEE Trans. Neural Netw. Learn. Syst. 23(10), 1637–1648 (2012)

    Article  Google Scholar 

  12. Xing, K., Wang, Y., Zhu, Q., Zhou, H.: Modeling and control of Mckibben artificial muscle enhanced with echo state networks. Control. Eng. Pract. 20(5), 477–488 (2012)

    Article  Google Scholar 

  13. Han, S.I., Lee, J.M.: Precise positioning of nonsmooth dynamic systems using fuzzy wavelet echo state networks and dynamic surface sliding mode control. IEEE Trans. Industr. Electron. 60(11), 5124–5136 (2012)

    Article  Google Scholar 

  14. Han, S.I., Lee, J.M.: Fuzzy echo state neural networks and funnel dynamic surface control for prescribed performance of a nonlinear dynamic system. IEEE Trans. Industr. Electron. 61(2), 1099–1112 (2013)

    Article  Google Scholar 

  15. Park, J., Cho, D., Kim, S., Kim, Y.B., Kim, P.Y., Kim, H.J.: Utilizing online learning based on echo-state networks for the control of a hydraulic excavator. Mechatronics 24(8), 986–1000 (2014)

    Article  Google Scholar 

  16. Galtier, M.: Ideomotor feedback control in a recurrent neural network. Biol. Cybern. 109(3), 363–375 (2015)

    Article  Google Scholar 

  17. Park, J., Lee, B., Kang, S., Kim, P.Y., Kim, H.J.: Online learning control of hydraulic excavators based on echo-state networks. IEEE Trans. Autom. Sci. Eng. 14(1), 249–259 (2016)

    Article  Google Scholar 

  18. Badoni, M., Singh, B., Singh, A.: Implementation of echo-state network-based control for power quality improvement. IEEE Trans. Industr. Electron. 64(7), 5576–5584 (2017)

    Article  Google Scholar 

  19. Jordanou, J.P., Antonelo, E.A., Camponogara, E.: Online learning control with echo state networks of an oil production platform. Eng. Appl. Artif. Intell. 85, 214–228 (2019)

    Article  Google Scholar 

  20. Lin, J.S., Kanellakopoulos, I.: Nonlinearities enhance parameter convergence in output-feedback systems. IEEE Trans. Autom. Control 43(2), 204–222 (1998)

    Article  MathSciNet  Google Scholar 

  21. Sastry, S., Bodson, M.: Adaptive Control: Stability, Convergence and Robustness. Prentice Hall, New Jersey (1989)

    MATH  Google Scholar 

  22. Pan, Y., Yu, H.: Composite learning robot control with guaranteed parameter convergence. Automatica 89, 398–406 (2018)

    Article  MathSciNet  Google Scholar 

  23. Pan, Y., Yu, H.: Composite learning from adaptive dynamic surface control. IEEE Trans. Autom. Control 61(9), 2603–2609 (2016)

    Article  MathSciNet  Google Scholar 

  24. Ortega, R., Nikiforov, V., Gerasimov, D.: On modified parameter estimators for identification and adaptive control. A unified framework and some new schemes. Ann. Rev. Control 50, 278–293 (2020)

    Google Scholar 

  25. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control, vol. 3. Wiley, New York (2006)

    Google Scholar 

  26. Kim, N., Calise, A.J.: Several extensions in methods for adaptive output feedback control. IEEE Trans. Neural Networks 18(2), 482–494 (2007)

    Article  Google Scholar 

  27. Gaz, C., Cognetti, M., Oliva, A., Giordano, P.R., De Luca, A.: Dynamic identification of the Franka Emika Panda robot with retrieval of feasible parameters using penalty-based optimization. IEEE Robot. Autom. Lett. 4(4), 4147–4154 (2019)

    Article  Google Scholar 

  28. Liu, X., Li, Z., Pan, Y.: Preliminary evaluation of composite learning tracking control on 7-DoF collaborative robots. In: IFAC Conference on Modelling, Identification and Control of Nonlinear Systems (IFAC-PapersOnLine), Tokyo, Japan, to be published (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Guangdong Pearl River Talent Program of China under Grant No. 2019QN01X154, and in part by the Fundamental Research Funds for the Central Universities of China under Grant No. 19lgzd40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, R., Li, Z., Pan, Y. (2021). Adaptive Echo State Network Robot Control with Guaranteed Parameter Convergence. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13016. Springer, Cham. https://doi.org/10.1007/978-3-030-89092-6_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89092-6_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89091-9

  • Online ISBN: 978-3-030-89092-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics