Skip to main content

Virtual Haptic System for Shape Recognition Based on Local Curvatures

Part of the Lecture Notes in Computer Science book series (LNIP,volume 13002)

Abstract

Haptic object recognition is widely used in various robotic manipulation tasks. Using the shape features obtained at either a local or global scale, robotic systems can identify objects solely by touch. Most of the existing work on haptic systems either utilizes a robotic arm with end-effectors to identify the shape of an object based on contact points, or uses a surface capable of recording pressure patterns. In this work, we introduce a novel haptic capture system based on the local curvature of an object. We present a haptic sensor system comprising of three aligned and equally spaced fingers that move towards the surface of an object at the same speed. When an object is touched, our system records the relative times between each contact sensor. Simulating our approach in a virtual environment, we show that this new local and low-dimensional geometrical feature can be effectively used for shape recognition. Even with 10 samples, our system achieves an accuracy of over \(90\%\) without using any sampling strategy or any associated spatial information.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allen, P.K., Roberts, K.S.: Haptic object recognition using a multi-fingered dextrous hand. Columbia University, Technical report (1988)

    Google Scholar 

  2. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 . ACM, New York (2016) (2016)

    Google Scholar 

  3. Dong, S., Yuan, W., Adelson, E.H.: Improved gelsight tactile sensor for measuring geometry and slip. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 137–144. IEEE (2017)

    Google Scholar 

  4. Gazebo (2021). http://gazebosim.org/

  5. Gielis, J.: A generic geometric transformation that unifies a wide range of natural and abstract shapes. Am. J. Botany 90(3), 333–338 (2003)

    Article  Google Scholar 

  6. Gomes, D.F., Paoletti, P., Luo, S.: Generation of gelsight tactile images for sim2real learning. arXiv preprint arXiv:2101.07169 (2021)

  7. Gorges, N., Navarro, S.E., Wörn, H.: Haptic object recognition using statistical point cloud features. In: 2011 15th International Conference on Advanced Robotics (ICAR), pp. 15–20. IEEE (2011)

    Google Scholar 

  8. Kullback, S., Leibler, R.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (2006)

    Article  MathSciNet  Google Scholar 

  9. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  10. Lederman, S.J., Klatzky, R.L.: Haptic perception: a tutorial. Attent. Percept. Psychophys 71(7), 1439–1459 (2009)

    Article  Google Scholar 

  11. Luo, S., Bimbo, J., Dahiya, R., Liu, H.: Robotic tactile perception of object properties: a review. Mechatronics 48, 54–67 (2017)

    Article  Google Scholar 

  12. Luo, S., Mou, W., Althoefer, K., Liu, H.: Iterative closest labeled point for tactile object shape recognition. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3137–3142. IEEE (2016)

    Google Scholar 

  13. Navarro, S.E., Gorges, N., Wörn, H., Schill, J., Asfour, T., Dillmann, R.: Haptic object recognition for multi-fingered robot hands. In: 2012 IEEE Haptics Symposium (HAPTICS), pp. 497–502. IEEE (2012)

    Google Scholar 

  14. Polic, M., Krajacic, I., Lepora, N., Orsag, M.: Convolutional autoencoder for feature extraction in tactile sensing. IEEE Rob. Autom. Lett. 4(4), 3671–3678 (2019)

    Article  Google Scholar 

  15. Pont, S.C., Kappers, A.M., Koenderink, J.J.: Similar mechanisms underlie curvature comparison by static and dynamic touch. Percept. Psychophys. 61(5), 874–894 (1999)

    Article  Google Scholar 

  16. Rouhafzay, G., Cretu, A.M.: A virtual tactile sensor with adjustable precision and size for object recognition. In: 2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), pp. 1–6. IEEE (2018)

    Google Scholar 

  17. Schneider, A., Sturm, J., Stachniss, C., Reisert, M., Burkhardt, H., Burgard, W.: Object identification with tactile sensors using bag-of-features. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 243–248. IEEE (2009)

    Google Scholar 

  18. Scott, D.W.: Multivariate density estimation and visualization. In: Gentle, J., Hardle, W., Mori, Y. (eds.) Handbook of Computational Statistics, pp. 549–569. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-21551-3_19

    Chapter  Google Scholar 

  19. Soh, H., Demiris, Y.: Incrementally learning objects by touch: online discriminative and generative models for tactile-based recognition. IEEE Trans. Haptics 7(4), 512–525 (2014)

    Article  Google Scholar 

  20. Spiers, A.J., Liarokapis, M.V., Calli, B., Dollar, A.M.: Single-grasp object classification and feature extraction with simple robot hands and tactile sensors. IEEE Trans. Haptics 9(2), 207–220 (2016)

    Article  Google Scholar 

  21. Wang, Y., Huang, W., Fang, B., Sun, F.: Elastic interaction of particles for robotic tactile simulation. arXiv preprint arXiv:2011.11528 (2020)

  22. Yuan, W., Dong, S., Adelson, E.H.: Gelsight: high-resolution robot tactile sensors for estimating geometry and force. Sensors 17(12), 2762 (2017)

    Article  Google Scholar 

  23. Zhang, M.M., Kennedy, M.D., Hsieh, M.A., Daniilidis, K.: A triangle histogram for object classification by tactile sensing. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4931–4938. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Miralles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garrofé, G., Parés, C., Gutiérrez, A., Ruiz, C., Serra, G., Miralles, D. (2021). Virtual Haptic System for Shape Recognition Based on Local Curvatures. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2021. Lecture Notes in Computer Science(), vol 13002. Springer, Cham. https://doi.org/10.1007/978-3-030-89029-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89029-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89028-5

  • Online ISBN: 978-3-030-89029-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics