Skip to main content

Phocid Sensory Systems and Cognition

  • Chapter
  • First Online:
Ethology and Behavioral Ecology of Phocids

Abstract

Phocid seals experience disparate terrestrial and aquatic habitats through unique sensory filters. These filters enable them to gather information as they move through each environment, with sensory streams combining to form a salient and perceptually limited construct of the far more cluttered physical world. An understanding of how seals ‘see’ the world is fundamental to every aspect of their behavior. Such an understanding must be pieced together from available clues about their sensory biology and cognitive capabilities. These can be derived from anatomical, behavioral, physiological, and evolutionary studies—and consideration of the unique and sometimes opposing selective pressures operating on these perfectly amphibious carnivores. In this chapter, we summarize what is known about the sensory abilities of phocid seals and link sensory performance to behavior. We examine how vision, hearing, touch and hydrodynamic perception, chemoreception, and other senses operate effectively under the conflicting demands of marine and terrestrial living and consider how information from individual single sensory systems is integrated to form a multimodal representation of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam PJ (2005) Lobodon Carcinophaga. Mammal Spec 772:1–14

    Google Scholar 

  • Ahl AS (1986) The role of vibrissae in behavior: a status review. Vet Res Commun 10:245–268

    CAS  PubMed  Google Scholar 

  • Andreae TW, Andreae MO, Schebeske G (1994) Biogenic sulfur emissions and areosols over the tropical south Atlantic 1. Dimethylsulfide in seawater and the atmosphere boundary layer. J Geophys Res 99:22819–22829

    Google Scholar 

  • Bartsh SS, Johnston SD, Siniff DB (1992) Territorial behavior and breeding frequency of male Weddell seal (Leptonychotes weddelii) in relation to age, size and concentrations of serum testosterone and cortisol. Can J Zool 70:680–692

    CAS  Google Scholar 

  • Beltran RS, Sadou MC, Condit R, Peters SH, Reichmuth C, Costa DP (2015) Fine-scale whisker growth measurements can reveal temporal foraging patterns from stable isotope signatures. Mar Ecol Prog Ser 523:243–253

    Google Scholar 

  • Bernholz CD, Matthews ML (1974) Critical flicker frequency in a harp seal: evidence for duplex retinal organization. Vis Res 15:733–737

    Google Scholar 

  • Bishop AM, Pomeroy P, Twiss SD (2015) Variability in individual rates of aggression in wild gray seals: fine-scale analysis reveals importance of social and spatial stability. Behav Ecol Sociobiol 69:1663–1675

    Google Scholar 

  • Bjorgesaeter A, Ugland KI, Bjorge A (2004) Geographic variation and acoustic structure of the underwater vocalization of harbor seals (Phoca vitulina) in Norway, Sweden and Scotland. J Acoust Soc Am 116:2459–2468

    PubMed  Google Scholar 

  • Blauert J (1997) Spatial hearing: the psychophysics of human sound localization. MIT Press, Cambridge

    Google Scholar 

  • Bodson A, Miersch L, Mauck B, Dehnhardt G (2006) Underwater auditory localization by a swimming harbor seal (Phoca vitulina). J Acoust Soc Am 120:1550–1557

    PubMed  Google Scholar 

  • Bodson A, Miersch L, Dehnhardt G (2007) Underwater localization of pure tones by harbor seals (Phoca vitulina). J Acoust Soc Am 122:2263–2269

    PubMed  Google Scholar 

  • Boenninghaus G (1903) Das Ohr des Zahnwales, zugleich ein Beitrag zur Theorie der Schalleitung. Eine biologische Studie. Zoologische Jahrbuecher Abteilung Fuer Anatomie Und Ontogenie Der Tiere 19:1–175

    Google Scholar 

  • Bowman MJ, Esaias WE (1978) Oceanic fronts in coastal processes. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bruesch SR, Arey LB (1942) The number of myelinated and unmyelinaed fibers in the optic nerve of vertebrates. J Comp Neurol 77:61–656

    Google Scholar 

  • Bublitz A (2010) Wasserbewegungen von stationären Fischen und ihre mögliche Bedeutung für fischfressende Tiere. Diploma thesis, University of Rostock

    Google Scholar 

  • Bürgermeister S, Zimmermann RL, Georgii HW, Bingemer HG, Kirst GO, Janssen M, Ernst W (1990) On the biogenic origin of dimethylsulfide: relation between chlorophyll, ATP, organismic DMSP, phytoplankton species, and DMS distribution in Atlantic surface water and atmosphere. J Geophys Res 95:20607–20615

    Google Scholar 

  • Burton RW, Anderson SS, Summers CF (1975) Perinatal activities in the grey seal (Halichoerus grypus). J Zool (Lond) 177:197–201

    Google Scholar 

  • Byl JA, Miersch L, Wieskotten S, Dehnhardt G (2016) Underwater sound localization of pure tones in the median plane by harbor seals (Phoca vitulina). J Acoust Soc Am 140:4490

    PubMed  Google Scholar 

  • Byl JA, Miersch L, Wieskotten S, Dehnhard G (2019) Underwater sound localization abilities of harbor seals (Phoca vitulina) for high-frequency noise band stimuli in the median plane. J Acoust Soc Am 146:189–194

    PubMed  Google Scholar 

  • Casey C, Charrier I, Methevon N, Reichmuth C (2015) Rival assessment among northern elephant seals: evidence of associate learning during male-male contests. R Soc Open Sci 12:150228

    Google Scholar 

  • Charrier I, Mathevon N, Aubin T (2013) Bearded sea males perceive geographic variations in their trills. Behav Ecol Sociobiol 67:1679–1689

    Google Scholar 

  • Connolly Sadou M, Beltran RS, Reichmuth C (2014) A calibration procedure for measuring pinniped vibrissae using photogrammetry. Aquat Mamm 40:213–218

    Google Scholar 

  • Cook P, Reichmuth C, Hanke FD (2021) The mind of a sea lion. In: Campagna C. Harcourt R (eds.) Ethology and Behavioral Ecology of Otariids and the Odobenid. Springer Nature Switzerland

    Google Scholar 

  • Costa DP, Breed GA, Robinson PW (2012) New insights into pelagic migrations: implications for ecology and conservation. Annu Rev Ecol Evol Syst 4(1):73–96

    Google Scholar 

  • Crognale MA, Levenson DH, Ponganis PJ, Deegan JF II, Jacobs GH (1998) Cone spectral sensitivity in the harbor seal (Phoca vitulina) and implications for color vision. Can J Zool 76:2114–2118

    Google Scholar 

  • Cronin TW, Bok MJ (2016) Photoreception and vision in the ultraviolet. J Exp Biol 219:2790–2801

    PubMed  Google Scholar 

  • Cunningham KA, Reichmuth C (2016) High-frequency hearing in seals and sea lions. Hear Res 331:83–91

    PubMed  Google Scholar 

  • Cunningham DE, Southall BL, Reichmuth C (2014a) Auditory sensitivity of seals and sea lions in complex listening scenarios. J Acoust Soc Am 136:3410–3421

    PubMed  Google Scholar 

  • Cunningham KA, Hayes SA, Wargo Rub AM, Reichmuth C (2014b) Auditory detection of ultrasonic coded transmitters by seals and sea lions. J Acoust Soc Am 135:1978–1985

    PubMed  Google Scholar 

  • Dawson WW, Hawthorne MN, Jenkins RL, Goldston RT (1982) Ginat neural systems in the inner retina and optic nerve of small whales. J Comp Neurol 205:1–7

    CAS  PubMed  Google Scholar 

  • Dawson WW, Jope GM, Ulshafer RJ, Hawthrone MN, Jenkins RL (1983) Contents of the optic nerve of a small cetacean. Aquat Mamm 10(2):45–56

    Google Scholar 

  • Debey LB, Pyenson ND (2013) Osteological correlates and phylogenetic analysis of deep diving in living and extinct pinnipeds: what good are big eyes? Mar Mamm Sci 29:48–83

    Google Scholar 

  • Deecke VB, Slater PJB, Ford JKB (2002) Selective habituation shapes acoustic predator recognition in harbour seals. Nature 420:171–173

    CAS  PubMed  Google Scholar 

  • Dehnhardt G, Kaminski A (1995) Sensitivity of the mystacial vibrissae of harbour seals (Phoca vitulina) for size differences of actively touched objects. J Exp Biol 198:2317–2323

    CAS  PubMed  Google Scholar 

  • Dehnhardt G, Mauck B (2008) Mechanoreception in secondarily aquatic vertebrates. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, Los Angeles, pp 295–314

    Google Scholar 

  • Dehnhardt G, Sinder M, Sachser N (1997a) Tactual discrimination of size by means of mystacial vibrissae in harbor seals: in air versus underwater. Zeitschrift Für Säugetierkunde 62:40–43

    Google Scholar 

  • Dehnhardt G, Sinder M, Sachser N (1997b) Tactual discrimination of size by means of mystacial vibrissae in harbour seals: in air versus underwater. In: Proceedings of the 1st international symposium on physiology and ethology of wild and zoo animals, pp 40–43

    Google Scholar 

  • Dehnhardt G, Mauck B, Bleckmann H (1998a) Seal whiskers detect water movements. Nature 394:235–236

    CAS  Google Scholar 

  • Dehnhardt G, Mauck B, Hyvärinen H (1998b) Ambient temperature does not affect tactile sensitivity of mystacial vibrissae in harbour seals. J Exp Biol 201:3023–3029

    CAS  PubMed  Google Scholar 

  • Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 293:102–104

    CAS  PubMed  Google Scholar 

  • Dehnhardt G, Hanke W, Wieskotten S, Krüger Y, Miersch L (2014) Hydrodynamic perception in seals and sea lions. In: Bleckmann H (ed) Flow sensing in air and water. Springer, Berlin Heidelberg, pp 147–167

    Google Scholar 

  • Dohmen M, Menzel M, Wiese H et al (2015) Understanding fiber mixture by simulation in 3D polarized light. Imaging. Neuroimage 111:464–475

    PubMed  Google Scholar 

  • Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice F (2002) Similarities and differences in the innervation of mystacial vibrissa follicle-sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol 449:103–119

    PubMed  Google Scholar 

  • Elsner R, Wartzok D, Sonafrank NB, Kelly BP (1989) Behavioral and physiological reactions of arctic seals during under-ice pilotage. Can J Zool 67:2506–2513

    Google Scholar 

  • Erbe C, Reichmuth C, Cunningham K, Lucke K, Dooling R (2016) Communication masking in marine mammals: a review and research strategy. Mar Pollut Bull 103:15–38

    CAS  PubMed  Google Scholar 

  • Erdsack N, Dehnhardt G, Hanke W (2014) Thermoregulation of the vibrissal system in harbor seals (Phoca vitulina) and Cape fur seals (Arctocephalus pusillus pusillus). J Exp Mar Biol Ecol 452:111–118

    Google Scholar 

  • Etienne AS, Jeffrey KJ (2004) Path integration in mammals. Hippocampus 14:180–192

    PubMed  Google Scholar 

  • Fasick JI, Robinson PR (2000) Spectral-tuning mechanisms of marine mammal rhodpsins and correlations with foraging depth. Vis Neurosci 17:781–788

    CAS  PubMed  Google Scholar 

  • Fay RR (1988) Hearing in vertebrates: a psychophysics databook. Hill-Fay, Winnetka

    Google Scholar 

  • Fletcher H (1940) Auditory patterns. Rev Mod Phys 12:47–65

    Google Scholar 

  • Floodgate GD, Fogg GE, Jones DA, Lochte K, Turley CM (1981) Microbiological and zooplankton activity at a front in Liverpool Bay. Nature 290:133–136

    Google Scholar 

  • Fuiman LA, Williams TA, Davis RW (2020) Homing tactics of Weddell seals in the Antarctic fast-ice environment. Mar Biol 167(116). https://doi.org/10.1007/s00227-020-03730-w

  • Geurten B, Niesterok B, Dehnhardt G, Hanke FD (2017) Saccadic movement strategy in a semiaquatic species—the harbor seal (Phoca vitulina). J Exp Biol 220:1503–1508

    PubMed  Google Scholar 

  • Ginter CC, Fish FE, Marshall CD (2010) Morphological analysis of the bumpy profile of phocid vibrissae. Mar Mamm Sci 26:733–743

    Google Scholar 

  • Ginter CC, DeWitt TJ, Fish FE, Marshall CD (2012) Fused traditional and geometric morphometrics demonstrate pinniped whisker diversity. PloS One 7:e34481

    Google Scholar 

  • Gläser N, Mauck B, Kandil F, Lappe M, Dehnhardt G, Hanke FD (2014) Harbour seals (Phoca vitulina) can perceive optic flow underwater. PloS One 9:e103555

    Google Scholar 

  • Gläser N (2012) Visual and hydrodynamic orientation abilities of pinnipeds. Dissertation, University of Rostock

    Google Scholar 

  • Grant R, Wieskotten S, Wengst N, Prescott T, Dehnhardt G (2013) Vibrissal touch sensing in the harbor seal (Phoca vitulina): how do seals judge size? J Comp Physiol A 199:521–533

    Google Scholar 

  • Greaves DK, Hammil MO, Eddington JD, Pettipas D, Schreer JF (2004) Growth rate and shedding of vibrissae in the gray seal, Halichoerus grypus: a cautionary note for stable isotope diet analysis. Mar Mamm Sci 20:296–304

    Google Scholar 

  • Hall-Aspland SA, Rogers TL, Canfield RB (2005) Stable carbon and nitrogen isotope analysis reveals seasonal variation in the diet of leopard seals. Mar Ecol Prog Ser 305:249–259

    CAS  Google Scholar 

  • Hanggi EB, Schusterman RJ (1995) Conditional discrimination learning in a male harbor seal (Phoca vitulina). In: Kastelein RA, Thomas JA, Nachtigall PE (eds) Sensory systems of aquatic mammals. DeSpil, Woerden, pp 543–559

    Google Scholar 

  • Hanggi EB, Schusterman RJ (1994) Underwater acoustic displays and individual variation in male harbour seals, Phoca vitulina. Anim Behav 48:1275–1283

    Google Scholar 

  • Hanke W, Bleckmann H (2004) The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigaed with scanning particle image velocimetry. J Exp Biol 207:1585–1596

    PubMed  Google Scholar 

  • Hanke FD, Dehnhardt G (2009) Aerial visual acuity in harbor seals (Phoca vitulina) as a function of luminance. J Comp Physiol A 195:643–650

    Google Scholar 

  • Hanke FD, Dehnhardt G, Schaeffel F, Hanke W (2006a) Corneal topography, refractive state, and accommodation in harbor seals (Phoca vitulina). Vis Res 46:837–847

    PubMed  Google Scholar 

  • Hanke W, Römer R, Dehnhardt G (2006b) Visual fields and eye movements in a harbor seal (Phoca vitulina). Vis Res 46:2804–2814

    PubMed  Google Scholar 

  • Hanke FD, Hanke W, Hoffmann K-P, Dehnhardt G (2008a) Optokinetic nystagmus in harbor seals (Phoca vitulina). Vis Res 48:304–315

    PubMed  Google Scholar 

  • Hanke FD, Kröger RHH, Siebert U, Dehnhardt G (2008b) Multifocal lenses in a monochromat: the harbour seal. J Exp Biol 211:3315–3322

    PubMed  Google Scholar 

  • Hanke FD, Hanke W, Scholtyssek C, Dehnhardt G (2009a) Basic mechanisms in pinniped vision. Exp Brain Res 199:299–311

    PubMed  Google Scholar 

  • Hanke FD, Peichl L, Dehnhardt G (2009b) Retinal ganglion cell topography in juvenile harbor seals (Phoca vitulina). Brain Behav Evol 74:102–109

    PubMed  Google Scholar 

  • Hanke W, Witte M, Miersch L et al (2010) Harbor seal vibrissa morphology suppresses vortex-induced vibrations. J Exp Biol 213:2665–2672

    PubMed  Google Scholar 

  • Hanke FD, Scholtyssek C, Hanke W, Dehnhardt G (2011) Contrast sensitivity in a harbor seal (Phoca vitulina). J Comp Physiol A 197:203–210

    Google Scholar 

  • Hanke FD, Miersch L, Warrant EJ, Mitschke FM, Dehnhardt G (2013) Are harbour seals (Phoca vitulina) able to perceive and use polarised light? J Comp Physiol A 199:509–519

    Google Scholar 

  • Hardy MH, Roff E, Smith TG, Ryg M (1991) Facial skin glands of ringed and gray seals, and their possible function as odoriferous organs. Can J Zool 69:189–200

    Google Scholar 

  • Härkönen T (1987) Seasonal and regional variations in the feeding habits of the harbour seal, Phoca vitulina, in the Skagerrak and the Kattegat. J Zool (Lond) 213:535–543

    Google Scholar 

  • Hastie GD, Donovan C, Götz T, Janik VM (2014) Behavioral responses by grey seals (Halichoerus grypus) to high frequency sonar. Mar Pollut Bull 79:205–210

    CAS  PubMed  Google Scholar 

  • Hayes SA, Kumar A, Daniel PC, Mellinger DK, Harvey JT, Southall BL, LeBoeuf BJ (2004) Evaluating the function of the male harbor seal, Phoca vitulina, roar through playback experiments. Anim Behav 67:1133–1139

    Google Scholar 

  • Heinrich T, Dehnhardt G, Hanke FD (2016) Harbor seals (Phoca vitulina) are able to time precisely. Anim Cogn 19:1133–1142

    PubMed  Google Scholar 

  • Heinrich T, Ravignani A, Hanke FD (2020) Visual timing abilities of a harbour seal (Phoca vitulina) and a South African fur seal (Arctocephalus pusillus pusillus) for sub- and supra-second time intervals. Anim Cogn 35(5):851–859

    Google Scholar 

  • Hemilä S, Nummela S, Berta A, Reuter T (2006) High-frequency hearing in phocid and otariid pinnipeds: an interpretation based on inertial and cochlear constraints. J Acoust Soc Am 120:3463–3466

    PubMed  Google Scholar 

  • Hirons AC, Schell DM, Aubin DJS (2001) Growth rates of vibrissae of harbor seals (Phoca vitulina) and Steller sea lions (Eumetopias jubatus). Can J Zool 79:1053–1061

    Google Scholar 

  • Hogg C, Neveu M, Stokkan K-A et al (2011) Artic reindeer extend their visual range into the ultraviolet. J Exp Biol 214:2014–2019

    PubMed  Google Scholar 

  • Hogg C, Neveu M, Folkow LP, Stokkan K-A, Kam JH, Douglas RH, Jeffrey G (2015) The eyes of the deep diving hooded seal (Cystophora cristata) enhance sensitivity to ultraviolet light. Biol Open 4:812–818

    PubMed  PubMed Central  Google Scholar 

  • Hollien H, Feinstein S (1976) Hearing in divers. In: Drew EA (ed) Underwater research. Academic Press, Cambridge, pp 81–138

    Google Scholar 

  • Holt MM, Schusterman RJ, Southall BL, Kastak D (2004) Localization of aerial broadband noise by pinnipeds. J Acoust Soc Am 115:2339–2345

    PubMed  Google Scholar 

  • Holt MM, Schusterman RJ, Kastak D, Southall BL (2005) Localization of aerial pure tones by pinnipeds. J Acoust Soc Am 118:3921–3926

    PubMed  Google Scholar 

  • Horton TW, Hauser N, Zerbini AN et al (2017) Route fidelity dring marine megafauna migration. Front Mar Sci 4:422

    Google Scholar 

  • Hughes A (1975) A quantitative analysis of the cat retinal ganglion cell topography. J Comp Neurol 163:107–128

    CAS  PubMed  Google Scholar 

  • Hughes A (1977) Topography of vision in mammals. In: Crescitelli F (ed) Handbook of sensory physiology. Springer, Berlin Heidelberg, pp 613–756

    Google Scholar 

  • Hyvärinen H (1989) Diving in darkness: whiskers as sense organs of the ringed seal (Phoca hispida). J Zool 218:663–678

    Google Scholar 

  • Hyvärinen H, Katajisto H (1984) Functional structure of the vibrissae of the ringed seal (Phoca hispida Schr.). Acta Zoologica Fennica 171:27–30

    Google Scholar 

  • Hyvärinen H, Palviainen A, Strandberg U, Holopainen IJ (2009) Aquatic environment and differentiation of vibrissae: comparison of sinus hair systems of ringed seal, otter and pole cat. Brain Behav Evol 74:268–279

    PubMed  Google Scholar 

  • Jamieson GS (1971) The functional significance of corneal distortion in marine mammals. Can J Zool 49:421–423

    CAS  PubMed  Google Scholar 

  • Jamieson GS, Fisher HD (1970) Visual discrimination in the harbour seal Phoca vitulina, above and below water. Vis Res 10:1175–1180

    CAS  PubMed  Google Scholar 

  • Jamieson GS, Fisher HD (1971) The retina of the harbour seal, Phoca vitulina. Can J Zool 49:19–23

    Google Scholar 

  • Jamieson GS (1970) The eye of the harbour seal, Phoca vitulina. Dissertation, The University of British Columbia

    Google Scholar 

  • Johnsen S (2017) Open questions: we don’t really know anything, do we? Open questions in sensory biology. BMC Biol 15(1):43. https://doi.org/10.1186/s1291-017-0385-3

  • Johnson GL (1901) Contributions to the comparative anatomy of the mammalian eye, chiefly based on ophthalmoscopic examination. Philos Trans R Soc Biol Characters 194:1–30

    Google Scholar 

  • Johnson GL (1893) Observations on the refraction and vision of the seal’s eye. Proc R Soc Lond 719–723

    Google Scholar 

  • Jones A, Marshall CD (2019) Does vibrissal innervation patterns and investment predict hydrodynamic trail following behavior of harbor seals (Phoca vitulina)? Anat Rec 302:1837–1845

    Google Scholar 

  • Käkelä R, Hyvärinen H (1993) Fatty acid composition of fats around the mystacial and superciliary vibrissae differs from that of blubber in the Saimaa ringed seal (Phoca hispida saimensis). Comp Biochem Physiol 105:547–552

    Google Scholar 

  • Käkelä R, Hyvärinen H (1996) Site-specific fatty acid composition in adipose tissues of several northern aquatic and terrestrial mammals. Comp Biochem Physiol 115:501–514

    Google Scholar 

  • Kastak D, Schusterman RJ (1998) Low-frequency amphibious hearing in pinnipeds: methods, measurements, noise, and ecology. J Acoust Soc Am 103:2216–2228

    CAS  PubMed  Google Scholar 

  • Kastelein RA, Wensveen P, Hoek L (2009a) Underwater hearing sensitivity of harbor seals (Phoca vitulina) for narrow noise bands between 0.2 and 80 kHz. J Acoust Soc Am 126:476–483

    PubMed  Google Scholar 

  • Kastelein RA, Wensveen PJ, Hoek L, Verboom WC, Terhune JM (2009b) Underwater detection of tonal signals between 0.25 and 100 kHz by harbor seals (Phoca vitulina). J Acoust Soc Am 125:1222–1229

    PubMed  Google Scholar 

  • Kastelein RA, Helder-Hoek L, Terhune JM (2018) Hearing thresholds, for underwater sounds, of harbor seals (Phoca vitulina) at the water surface. J Acoust Soc Am 143:2554–2563

    PubMed  Google Scholar 

  • Kasumyan AO (2008) Sounds and sound production in fishes. J Ichthyol 48:981–1030

    Google Scholar 

  • Kellog WN (1958) Echoranging in the porpoise. Science 128:982–988

    Google Scholar 

  • Kenyon KW, Rice DW (1959) Life history of the Hawaiian monk seal. Pac Sci 13(3):215–252

    Google Scholar 

  • Kilian M, Dehnhardt G, Hanke FD (2015) How harbor seals (Phoca vitulina) pursue schooling herring. Mamm Biol 80:385–389

    Google Scholar 

  • Kilian M (2010) Hydrodynamische Spurverfolgung beim Seehund (Phoca vitulina). Diploma thesis, University of Rostock

    Google Scholar 

  • Kim SK, Amundin M, Laska M (2013) Olfactory discrimination ability of South African fur seals (Arctocephalus pusillus) for enantiomers. J Comp Physiol A 199:535–544

    Google Scholar 

  • King JE (1983) Seals of the world. Cambridge University Press, Cambridge

    Google Scholar 

  • King JE (1969) Some aspects of the anatomy of the Ross seal, Ommatophoca rossi (Pinnipedia: Phocidae). British Antarctic Survey, Scientific reports, No. 63, London

    Google Scholar 

  • Kovacs KM (1995) Mother-pup reunions in harp seals, Phoca groenlandica—cues for the relocation of pups. Can J Zool 73:843–849

    Google Scholar 

  • Kowalewsky S, Dambach M, Mauck B, Dehnhardt G (2006) High olfactory sensitivity for dimethyl sulphide in harbor seals. Biol Lett 2:106–109

    CAS  PubMed  Google Scholar 

  • Kröger RHH, Campbell MCW, Fernald RD, Wagner H-J (1999) Multifocal lenses compensate for chromatic defocus in vertebrate eyes. J Comp Physiol A 184:361–369

    PubMed  Google Scholar 

  • Krüger Y, Hanke W, Miersch L, Dehnhardt G (2018) Detection and direction discrimination of single vortext rings by harbour seals (Phoca vitulina). J Exp Biol 221(8):jeb170753 https://doi.org/10.1242/jeb.170753

  • Krüger Y (2017) Perception of single vortex rings by harbour seals (Phoca vitulina). Dissertation, University of Rostock

    Google Scholar 

  • Landau D, Dawson WW (1970) The histology of retinas from the pinnipedia. Vis Res 10:691–702

    CAS  PubMed  Google Scholar 

  • Lavigne DM, Oritsland NA (1974) Black polar bears. Nature 251:218–219

    Google Scholar 

  • Lavigne DM, Ronald K (1975a) Evidence of duplicity in the retina of the California sea lion (Zalophus californianus). Comp Biochem Physiol 50A:65–70

    Google Scholar 

  • Lavigne DM, Ronald K (1975b) Pinniped visual pigments. Comp Biochem Physiol 52:325–329

    CAS  Google Scholar 

  • Lesage V, Hammil MO, Kovacs KM (1999) Functional classification of harbor seal (Phoca vitulina) dives using depth profiles, swimming velocity, and an index of foraging success. Can J Zool 77:74–87

    Google Scholar 

  • Levenson DH, Schusterman RJ (1997) Pupillometry in seals and sea lions: ecological implications. Can J Zool 75:2050–2057

    Google Scholar 

  • Levenson DH, Schusterman RJ (1999) Dark adaptation and visual sensitivity in shallow and deep-diving pinnipeds. Mar Mamm Sci 15:1303–1313

    Google Scholar 

  • Levenson DH, Ponganis PJ, Crognale MA, Deegan JF II, Dizon A, Jacobs GH (2006) Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter. J Comp Physiol A 192:833–843

    CAS  Google Scholar 

  • Ling JK (1977) Vibrissae of marine mammals. In: Harrison RJ (ed) Functional anatomy of marine mammals. Academic Press, London, pp 387–415

    Google Scholar 

  • Lübcker N, Condit R, Beltran RS, de Bruyn N, Besler MN (2016) Vibrissal growth parameters of southern elephant seals (Mirounga leonina): obtaining fine-scale time-based stable isotope data. Mar Ecol Prog Ser 559:243–255

    Google Scholar 

  • Lucke K, Hastie GD, Ternes K et al (2016) Aerial low-frequency hearing in captive and free-ranging harbour seals (Phoca vitulina) measured using auditory brainstem responses. J Comp Physiol A 202:859–868

    Google Scholar 

  • Lui LL, Dobiecki AE, Bourne JA, Rosa MGP (2012) Breaking camouflage: responses of neurons in the middle temporal area to stimuli defined by coherent motion. Eur J Neurosci 36:2063–2076

    PubMed  Google Scholar 

  • Lythgoe JN, Dartnall HJA (1970) A ‘deep sea rhodopsin’ in a marine mammal. Nature 227:995–996

    Google Scholar 

  • Marshall CD, Amin H, Kovacs KM, Lydersen C (2006) Microstructure and innervation of the vibrissal follicle-sinus complex in the bearded seal, Erignathus barbatus (Pinnipedia: Phocidae). Anat Rec 288A:13–25

    Google Scholar 

  • Mass AM, Supin AY (1989) Distribution of ganglion cells in the retina of an amazon river dolphin Inia geoffrensis. Aquat Mamm 15(2):49–56

    Google Scholar 

  • Mass AM, Supin AY (1995) Ganglion cell topography of the retina in the bottlenose dolphin, Tursiops truncatus. Brain Behav Evol 45:257–265

    CAS  PubMed  Google Scholar 

  • Mass AM, Supin AY (2003) Retinal topography of the harp seal Pagophilus Groenlandicus. Brain Behav Evol 62:212–222

    Google Scholar 

  • Mass AM, Supin AY (2007) Adaptive features of aquatic mammals’ eyes. Anat Rec 290:701–715

    Google Scholar 

  • Mass AM, Supin AY (2010) Retinal ganglion cell layer of the Caspian seal Pusa caspica: topography and localization of the high-resolution area. Brain Behav Evol 76:144–153

    PubMed  Google Scholar 

  • Mass AM, Ketten DR, Odell DK, Supin AY (2012a) Ganglion cell distribution in the Florida manatee, Trichechus manatus latirostris. Anat Rec 296:177–186

    Google Scholar 

  • Mass AM, Supin AY, Mukhametoc IM, Rozanova EI, Abramov AV (2012b) Morphological estimation of retinal resolution of a killer whale (Orcinus orca). Dokl Biol Sci 442:34–37

    CAS  PubMed  Google Scholar 

  • Matsumura M, Watanabe YY, Robinson PW, Miller PJO, Costa DP, Miyazaki N (2011) Underwater and surface behavior of homing juvenile northern elephant seals. J Exp Biol 214:629–636

    PubMed  Google Scholar 

  • Mattson EE, Marshall CD (2016) Follicle microstructure and innervation vary between pinniped micro- and macrovibrissae. Brain Behav Evol 88(1):43–58 https://doi.org/10.1159/000447551

  • Mauck B, Dehnhardt G (2005) Identity concept formation during visual multiple-choice matching in a harbor seal (Phoca vitulina). Learn Behav 33:428–436

    PubMed  Google Scholar 

  • Mauck B, Brown D, Schlosser W, Schaeffel F, Dehnhardt G (2005) How a harbour seal sees the night sky. Mar Mamm Sci 21(4):646–656

    Google Scholar 

  • Mauck B, Dehnhardt G (2007) Spatial multiple-choice matching in a harbour seal (Phoca vitulina): differential encoding of landscape versus local feature information? Anim Cogn 10:397–405

    PubMed  Google Scholar 

  • Mauck B, Eysel U, Dehnhardt G (2000) Selective heating of vibrissal follicles in seals (Phoca vitulina) and dolphins (Sotalia fluviatilis guianensis). J Exp Biol 203:2125–2131

    CAS  PubMed  Google Scholar 

  • Mauck B, Gläser N, Schlosser W, Dehnhardt G (2008) Harbour seals (Phoca vitulina) can steer by the stars. Anim Cogn 11:715–718

    PubMed  Google Scholar 

  • McGovern KA, Marshall CD, Davis RW (2015) Are vibrissae viable sensory structures for prey capture in northern elephant seals, Mirounga angustirostris? Anat Rec 298:750–760

    Google Scholar 

  • McHuron EA, Walcott SM, Skrovan S, Costa DP, Reichmuth C (2016) Whisker growth dynamics in two North Pacific pinnipeds: implications for determining foraging ecology from stable isotope analysis. Mar Ecol Prog Ser 554:213–224

    Google Scholar 

  • McHuron EA, Williams T, Costa DP, Reichmuth C (2020) Contrasting whisker growth dynamics within the phocid lineage. Mar Ecol Prog Ser 634:231–236

    Google Scholar 

  • Miersch L, Hanke W, Wieskotten S et al (2011) Flow sensing in pinniped whiskers. Philos Trans R Soc Lond B Biol Sci 366:3077–3084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miksis-Olds JL, Madden LE (2014) Environmental predictors of ice seal presence in the Bering Sea. PloS One 9:e106998

    Google Scholar 

  • Mills FHJ, Renouf D (1986) Determination of the vibration sensitivity of harbor seal Phoca vitulina (L.) vibrissae. J Exp Mar Biol Ecol 100:3–9

    Google Scholar 

  • Milne AO, Smith C, Orton LD, Sullivan MS, Grant RA (2020) Pinnipeds orient and control their whiskers: a study on Pacific walrus, California sea lion and harbor seal. J Comp Physiol A 206:441–451

    Google Scholar 

  • Mittelstaedt H, Mittelstaedt M-L (1982) Homing by path integration. In: Papi F, Wallraff HG (eds) Avian navigation—international symposium on avian navigation (ISAN) held at Tirrenia (Pisa), September 11–14, 1981. Springer, Berlin, pp 290–298

    Google Scholar 

  • Møhl B (1964) Preliminary studies on hearing in seals. Videnskabelige Meddelelser Fra Dansk Naturhistorik Forening I Kjobenhaven 127:283–294

    Google Scholar 

  • Møhl B (1967) Seal ears. Science 157:99

    PubMed  Google Scholar 

  • Møhl B (1968a) Auditory sensitivity of the common seal in air and water. J Audit Res 8:27–38

    Google Scholar 

  • Møhl B (1968b) Hearing in seals. In: Harrison RJ, Hubbard RC, Peterson RS, Rise CE, Schusterman RJ (eds) The behavior and physiology of pinnipeds. Appleton Century Crofts, New York, pp 172–193

    Google Scholar 

  • Mooney TA, Yamato M, Branstetter BK (2012) Hearing in cetaceans: from natural history to experimental biology. In: Lesser M (ed) Advances in marine biology. Academic Press, Cambridge, pp 197–246

    Google Scholar 

  • Morgane PJ, Jacobs M (1972) Comparative anatomy of the cetacean nervous system. In: Harrison RJ (ed) Functional anatomy of marine mammals. Academic Press, New York, pp 117–244

    Google Scholar 

  • Morrison HE, Brede M, Dehnhardt G, Leder A (2016) Simulating the flow and trail following capabilities of harbour seal vibrissae with the Lattice Boltzmann Method. J Comput Sci 17:394–402. https://doi.org/10.1016/j.jocs.2016.04.004

    Article  Google Scholar 

  • Müller B, Goodman SM, Peichl L (2007) Cone photorecepor diversity in the retinas of fruit bats (Megachiroptera). Brain Behav Evol 70:90–104

    PubMed  Google Scholar 

  • Muller BS, Bovet P (1999) Role of pinnae and head movements in localizing pure tones. Swiss J Psychol 58:170–179

    Google Scholar 

  • Murphy CT, Reichmuth C, Mann D (2015) Vibrissal sensitvity in a harbor seal (Phoca vitulina). J Exp Biol 218:2463–2471

    PubMed  Google Scholar 

  • Murphy CT, Reichmuth C, Eberhardt WC, Calhoun BH, Mann DA (2017) Seal whiskers vibrate over broad frequencies during hydrodynamic tracking. Sci Rep 7:8350

    PubMed  PubMed Central  Google Scholar 

  • Murphy CJ, Eberhardt WC, Calhoun BH, Mann KA, Mann DA (2013) Effect of angle on flow-induced vibrations of pinniped vibrissae. PloS One 8:e69872

    Google Scholar 

  • Nagy AR, Ronald K (1970) The harp seal, Pagophilus groenlandicus (Erxleben, 1777). VI. Structure of retina. Can J Zool 48:367–370

    CAS  PubMed  Google Scholar 

  • Nevitt GA (2008) Sensory ecology on the high seas: the odor world of the procellariiforms seabirds—review. J Exp Biol 211:1706–1713

    PubMed  Google Scholar 

  • Nevitt GA, Bonadonna F (2005) Sensitivity to dimethyl sulphide suggests a mechanism for olfactory navigation by seabirds. Biol Lett 1:303–305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newby TC, Hart FM, Arnold RA (1970) Weight and blindness of harbor seals. J Mammol 51(1):152

    Google Scholar 

  • Newland C, Field IC, Cherel Y, Guinet C, Bradshaw CJA, McMahon CR, Hindell MA (2011) Diet of juvenile southern elephant seals reappraised by stable isotopes in whiskers. Mar Ecol Prog Ser 424:247–258

    Google Scholar 

  • Newman LA, Robinson PR (2005) Cone visual pigments of aquatic mammals. Vis Neurosci 22:873–879

    PubMed  Google Scholar 

  • Niesterok B, Hanke W (2013) Hydrodynamic patterns from fast-starts in teleost fish and their possible relevance to predator-prey interactions. J Comp Physiol A 199:139–149

    Google Scholar 

  • Niesterok B, Krüger Y, Wieskotten S, Dehnhard G, Hanke W (2017) Hydrodynamic detection and localization of artificial flatfish breathing currents by harbour seals (Phoca vitulina). J Exp Biol 220:174–185

    PubMed  Google Scholar 

  • Niesterok B, Dehnhard G, Hanke W (2017a) Hydrodynamic sensory threshold in harbour seals (Phoca vitulina) for artificial flatfish breathing currents. J Exp Biol 220:2364–2371

    PubMed  Google Scholar 

  • Nordmann GC, Hochstoeger T, Keays DA (2017b) Magnetoreception—a sense without a recepter. PLoS Biology 15(10):e2003234

    Google Scholar 

  • Norris K (1967) Some observations on the migration and orientation of marine mammals. In: Storm RM (ed) Animal orientation and navigation. Oregon State University Press, Corvallis, OR, pp 101–125

    Google Scholar 

  • Nummela S (2008) Hearing in aquatic mammals. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley Los Angeles, London, pp 211–224

    Google Scholar 

  • Nummela S, Pihlström H, Puolamäki K, Fortelius M, Hemilä S, Reuter T (2013) Exploring the mammalian sensory space: co-operations and trade-offs among senses. J Comp Physiol A 199:1077–1092

    Google Scholar 

  • Ogden TE, Miller RF (1966) Studies of the optic nerve of the rhesus monkey: nerve fiber spectrum and physiological properties. Vis Res 6:485–506

    CAS  PubMed  Google Scholar 

  • Oliver GW (1978) Navigation in mazes by a grey seal, Halichoerus grypus (Fabricius). Behaviour 67:97–114

    Google Scholar 

  • Oppermann D, Schramme J, Neumeyer C (2016) Rod-cone based color vision in seals under photopic conditions. Vis Res 125:30–40

    PubMed  Google Scholar 

  • Pardue MT, Sivak JG, Kovacs KM (1993) Corneal anatomy of marine mammals. Can J Zool 71:2282–2290

    Google Scholar 

  • Peichl L (2005) Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? Anat Rec 287A:1001–1012

    CAS  Google Scholar 

  • Peichl L, Moutairou K (1998) Absence of short-wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia). Eur J Neurosci 10:2586–2594

    CAS  PubMed  Google Scholar 

  • Peichl L, Behrmann G, Kröger RHH (2001) For whales and seals the ocean is not blue: a visual pigment loss in marine mammals. Eur J Neurosci 13:1520–1528

    CAS  PubMed  Google Scholar 

  • Philström H, Fortelius M, Hemilä S, Forsman R, Reuter T (2005) Scaling of mammalian ethmoid bones can predict olfactory organ size and performance. Proc R Soc B: Biol Sci 272:957–962

    Google Scholar 

  • Pierce GJ, Thompson PM, Miller A, Diack JSW, Miller D, Boyle PR (1991) Seasonal variation in the diet of common seals (Phoca vitulina) in the Moray Firth area of Scotland. J Zool (Lond) 223:641–652

    Google Scholar 

  • Piggins DJ (1970) Refraction of the harp seal, Pagophilus groenlandicus (Erxleben 1777). Nature 227:78–79

    CAS  PubMed  Google Scholar 

  • Potts AM, Hodges D, Shelman CB, Fritz KJ, Levy NS, Mangnall Y (1972) Morphology of the primate optic nerve—I. Method and total fiber count. Invest Ophthalmol 11(12):980–988

    Google Scholar 

  • Pütter A (1903) Die Augen der Wassersäugethiere. Zoologische Jahrbuecher Abteilung Fuer Anatomie Und Ontogenie Der Tiere 17:99–402

    Google Scholar 

  • Rahmann H (1967) Die Sehschärfe Bei Wirbeltieren. Naturwissenschaftliche Rundschau 1:10–14

    Google Scholar 

  • Reep RL, Finlay BL, Darlington RB (2006) The limbic system in mammalian brain evolution. Brain Behav Evol 70:57–70

    Google Scholar 

  • Reichmuth C (2014) Psychophysical studies of auditory masking in marine mammals: key concepts and new directions. In: Popper AN, Hawkins A (eds) The effects of noise on aquatic life. Springer, Berlin, pp 23–27

    Google Scholar 

  • Reichmuth C, Casey C (2014) Vocal learning in seals, sea lions, and walruses. Curr Opin Neurobiol 28:66–71

    CAS  PubMed  Google Scholar 

  • Reichmuth C, Holt MM, Mulsow J, Sills JM, Southall BL (2013) Comparative assessment of amphibious hearing in pinnipeds. J Comp Physiol A 199:491–507

    Google Scholar 

  • Renouf D (1979) Preliminary measurements of the sensitivity of the vibrissae of harbor seals (Phoca vitulina) to low frequency vibrations. J Zool (Lond) 188:443–450

    Google Scholar 

  • Renouf D (1980a) Fishing in captive harbour seals (Phoca vitulina concolor): a possible role for vibrissae. Netherlands J Zool 30:504–509

    Google Scholar 

  • Renouf D (1980b) Masked hearing thresholds of harbour seals (Phoca vitulina) in air. J Audit Res 20:263–269

    CAS  Google Scholar 

  • Renouf D, Davis MB (1982) Evidence that seals may use echolocation. Nature 300(5893):635–637

    CAS  PubMed  Google Scholar 

  • Renouf D, Gaborko L (1988) Spatial matching to sample in harbour seals (Phoca vitulina). Biol Behav 13:73–81

    Google Scholar 

  • Renouf D, Lawson J, Gabarko L (1983) Attachment between harbour seal (Phoca vitulina) mothers and pups. J Zool (Lond) 199:179–187

    Google Scholar 

  • Renouf D (1991) Sensory reception and processing in Phocidae and Otariidae. In: Renouf D (ed) Behaviour in pinnipeds. Springer Science+Business Media, Dordrecht, pp 345–394

    Google Scholar 

  • Repenning CA (1972) Underwater hearing in seals: functional morphology. In: Harrison RJ (ed) Functional anatomy of marine mammals. Academic Press, London, pp 307–331

    Google Scholar 

  • Reynolds PS, Lavigne DM (1981) Visible and ultraviolet reflectance characteristics of Arctic homeotherms. Int J Biometeorol 25(4):299–308

    Google Scholar 

  • Ridgway SH, Joyce PL (1975) Studies on seal brain by radiotelemetry. ICES J Mar Sci 169:81–91

    Google Scholar 

  • Robinson PW, Costa DP, Crocker DE et al (2012) Foraging behavior and success of a mesopelagic predator in the Northeast Pacific Ocean: insights from a data-rich species, the northern elephant seal. PloS One 7:e36728

    Google Scholar 

  • Rogers TL, Fung J, Slip D, Steindler L, O’Connell TC (2016) Calibrating the time span of longitudinal biomarkers in vertebrate tissues when fine-scale growth records are unavailable. Ecosphere 7:e01449

    Google Scholar 

  • Ruscher B, Sills JM, Richter BP, Reichmuth C (2021) In-air hearing in Hawaiian monk seals: implications for understanding the auditory biology of Monachinae seals. J Comp Physiol A 1–13: https://doi.org/10.1007/s00359-021-01498-y

  • Ruser A, Dähne M, Sundermeyer J et al (2014) In-air evoked potential audiometry of grey seals (Halichoerus grypus) from the North and Baltic Sea. PloS One 9:e90824

    Google Scholar 

  • Ryg M, Solberg Y, Lydersen C, Smith TG (1992) The scent of rutting male ringed seals (Phoca hispida). J Zool (Lond) 226:681–689

    Google Scholar 

  • Sanchez RM, Dunkelberger GR, Quigley HA (1986) The number and diameter distribution of axons in the monkey optic nerve. Invest Ophthalmol vis Sci 27:1342–1350

    CAS  PubMed  Google Scholar 

  • Scholtyssek C, Kelber A, Dehnhardt G (2008) Brightness discrimination in the harbor seal (Phoca vitulina). Vis Res 48:96–103

    PubMed  Google Scholar 

  • Scholtyssek C, Kelber A, Hanke FD, Dehnhardt G (2013) Same different concept formation in a harbor seal (Phoca vitulina). Anim Cogn 16:915–925

    PubMed  Google Scholar 

  • Scholtyssek C, Kelber A, Dehnhardt G (2015) Why do seals have cones? Behavioral evidence for colorblindness in harbor seals. Anim Cogn 18:551–560

    PubMed  Google Scholar 

  • Schulte-Pelkum N, Wieskotten S, Hanke W, Dehnhardt G, Mauck B (2007) Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina). J Exp Biol 210:781–787

    CAS  PubMed  Google Scholar 

  • Schusterman RJ, Balliet RF (1970) Visual acuity of the harbour seal and the Stellar sea lion under water. Nature 226:563–564

    CAS  PubMed  Google Scholar 

  • Schusterman RJ, Kastak D (2002) Problem solving and memory. In: Hoelzel R (ed) Marine mammal biology–an evolutionary approach. Blackwell Publishing, Oxford, pp 371–387

    Google Scholar 

  • Schusterman RJ, Kastak D, Levenson DH, Reichmuth Kastak C, Southall BL (2004) Pinniped sensory systems and the echolocation issue. In: Thomas JA, Moss C, Vater M (eds) Echolocation in bats and dolphins. University of Chicago Press, Chicago, pp 531–535

    Google Scholar 

  • Sills JM, Southall BL, Reichmuth C (2014) Amphibious hearing in spotted seals (Phoca largha): underwater audiograms, aerial audiograms and critical ration measurements. J Exp Biol 217:726–734

    PubMed  Google Scholar 

  • Sills JM, Southall BL, Reichmuth C (2015) Amphibious hearing in ringed seals (Pusa hispida): underwater audiograms, aerial audiograms and critical ratio measurements. J Exp Biol 218:2250–2259

    PubMed  Google Scholar 

  • Sills J, Parnell K, Reichmuth C (2018) The production and reception of underwater sound in Hawaiian monk seals (Neomonachus schauinslandi). J Acoust Soc Am 144(3):1741–1741

    Google Scholar 

  • Sills JM, Reichmuth C, Southall BL, Whiting A, Goodwin J (2020) Auditory biology of bearded seals (Erignathus barbatus). Polar Biol 43:1681–1691

    Google Scholar 

  • Sills JM, Parnell KP, Lew C, Kendall T, Reichmuth C (2021) Underwater hearing and communication in the endangered Hawaiian monk seal, Neomonachus schauinslandi. Endanger Spec Res 44:61–78

    Google Scholar 

  • Sivak JG, Howland HC, West J, Weerheim J (1989) The eye of the hooded seal, Cristophora cristata, in air and water. J Comp Physiol A 165:771–777

    CAS  PubMed  Google Scholar 

  • Smodlaka H, Khamas WA, Palmer L, Lui B, Borovac JA, Cohn BA, Schmitz L (2016) Eye histology and ganglion cell topography of northern elephant seals (Mirounga angustirostris). Anat Rec 299:798–805

    Google Scholar 

  • Sonntag CF (1923) The comparative anatomy of the tongues of the mammalia. VIII, Carnivora. Proc Zool Soc Lond 9:129–153

    Google Scholar 

  • Southall BL, Schusterman RJ, Kastak D (2000) Masking in three pinnipeds: underwater, low-frequency critical ratios. J Acoust Soc Am 108:1322–1326

    CAS  PubMed  Google Scholar 

  • Southall KD, Oliver GW, Lewis JW, Le Boeuf BJ, Levenson DH, Southall BL (2002) Visual pigment sensitivity in three deep diving marine mammals. Mar Mamm Sci 18:275–281

    Google Scholar 

  • Southall BL, Schusterman RJ, Kastak D (2003) Auditory masking in three pinnipeds: aerial criticial ratios and direct critical bandwidth measurements. J Acoust Soc Am 114:1660–1666

    PubMed  Google Scholar 

  • Southall BL, Finneran JJ, Reichmuth C et al (2019) Marine mammal noise exposure criteria: updated scientific recommondations for residual hearing effects. Aquat Mamm 45:125–232

    Google Scholar 

  • Spitzka EC (1890) Remarks on the brain of the seals. Am Nat 24:115–122

    Google Scholar 

  • Spoor F, Thewissen JGM (2008) Comparative and functional anatomy of balance in aquatic mammals. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley Los Angeles, London, pp 257–284

    Google Scholar 

  • Stansbury AL, Götz T, Deecke VB, Janik VM (2015) Grey seals use anthopogenic signals from acoustic tags to locate fish: evidence from a simulated foraging task. Proc R Soc B: Biol Sci 282:20141595

    Google Scholar 

  • Stenfors L-E, Sadé J, Hellstrom S, Anniko M (2001) How can the hooded seal dive to a depth of 1000 m without rupturing its tympanic membrane? A morphological and functional study. Acta Otolaryngol 121:689–695

    CAS  PubMed  Google Scholar 

  • Sticken J, Dehnhardt G (2000) Salinity discrimination in harbour seals: a sensory basis for spatial orientation in the marine environment? Naturwissenschaften 87:499–502

    CAS  PubMed  Google Scholar 

  • Terhune JM (1974) Directional hearing of a harbour seal in air and water. J Acoust Soc Am 56:1862–1865

    CAS  PubMed  Google Scholar 

  • Terhune JM (1991) Masked and unmasked pure tone detection thresholds of a harbour seal listening in air. Can J Zool 69:2059–2066

    Google Scholar 

  • Terhune JM, Ronald K (1971) The harp seal, Pagophilus groenlandicus (Erxleben, 1777). X. The air audiogram. Can J Zool 49:385–390

    CAS  PubMed  Google Scholar 

  • Terhune JM, Ronald K (1975) Underwater hearing sensitivity of two ringed seals (Pusa hispida). Can J Zool 53:227–231

    CAS  PubMed  Google Scholar 

  • Thomas J, Moore P, Withrow R, Stoemer M (1990) Underwater audiogram of a Hawaiian monk seal (Monachus schauinslandi). J Acoust Soc Am 87:417–420

    Google Scholar 

  • Tollit DJ, Thompson PM (1996) Seasonal and between-year variations in the diet of harbour seals in the Moray Firth, Scotland. Can J Zool 74:1110–1121

    Google Scholar 

  • Tuckerman F (1890) On the gustatory organs of some of the mammalia. J Morphol 4:151–193

    Google Scholar 

  • Turnbull SD, Terhune JM (1990) White noise and pure tone masking of pure tone thresholds of a harbour seal listening in air and underwater. Can J Zool 68:2090–2097

    Google Scholar 

  • Turnbull SD, Terhune JM (1993) Repetition enhances hearing detection thresholds in a harbour seal (Phoca vitulina). Can J Zool 71:926–932

    Google Scholar 

  • Turnbull SD, Terhune JM (1994) Descending frequency swept tones have lower thresholds than ascending frequency swept tones for a harbor seal (Phoca vitulina) and human listeners. J Acoust Soc Am 96(5):2631–2636

    CAS  PubMed  Google Scholar 

  • Turner EC, Sawyer EK, Kaas JH (2017) Optic nerve, superior colliculus, visual thalamus, and primary visual cortex of the northern elephant seal (Mirounga angustirostris) and California sea lion (Zalophus californianus). J Comp Neurol 525:2109–2132. https://doi.org/10.1002/cne.24188

    Article  CAS  PubMed  Google Scholar 

  • Vacquie-Garcia J, Mallefet J, Bailleul F, Picard B, Guinet C (2017) Marine bioluminescence: measurement by a classical light sensor and related foraging behvior of a deep diving predator. Photochem Photobiol 93:1312–1319

    CAS  PubMed  Google Scholar 

  • Vacquie-Garcia J, Royer F, Dragon A-C, Viviant M, Bailleul F, Guinet C (2012) Foraging in the darkness of the Southern ocean: influence of bioluminescence on a deep diving predator. PloS One 7:e43565

    Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Hafner Press, New York

    Google Scholar 

  • Walsh SJ, Skinner DM, Martin GM (2007) Location serves as a conditional cue when harp seals (Pagophilus groenlandicus) solve object discrimination reversal problems. Can J Psychol 61:44–53

    Google Scholar 

  • Walters A, Lea M-A, van den Hoff J et al (2014) Spatially explicit estimates of prey consumption reveal a new krill predator in the southern ocean. PloS One 9:e86452

    Google Scholar 

  • Warrant EJ, Locket NA (2004) Vision in the deep sea. Biol Rev 79:671–712

    PubMed  Google Scholar 

  • Wartzok D, Ketten DR (1999) Marine mammal sensory systems. In: Reynolds JE, Rommel SA (eds) Biology of marine mammals. Smithsonian Institution Press, Washington London, pp 117–175

    Google Scholar 

  • Wartzok D, McCormick MG (1978) Color discrimination by a Bering sea spotted seal, Phoca largha. Vis Res 18:781–784

    CAS  PubMed  Google Scholar 

  • Wartzok D, Elsner R, Stone H, Kelly BP, Davis RW (1992) Under-ice movements and the sensory basis of hole finding by ringed and Weddell seals. Can J Zool 70:1712–1722

    Google Scholar 

  • Weiffen M, Möller B, Mauck B, Dehnhardt G (2006) Effect of water turbidity on the visual acuity of harbor seals (Phoca vitulina). Vis Res 46:1777–1783

    PubMed  Google Scholar 

  • Weiffen M, Mauck B, Dehnhardt G, Hanke FD (2014) Sensitivity of a harbor seal (Phoca vitulina) to coherent visual motion in random dot displays. Springerplus 3:688

    PubMed  PubMed Central  Google Scholar 

  • Welsch U, Ramdohr S, Riedelsheimer B, Hebel R, Eisert R, Plötz J (2001) Microscopic anatomy of the eye of the deep-diving Antarctic Weddell seal (Leptonychotes weddellii). J Morphol 248:165–174

    CAS  PubMed  Google Scholar 

  • Wieskotten S, Dehnhardt G, Mauck B, Miersch L, Hanke W (2010a) Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal (Phoca vitulina). J Exp Biol 213:2194–2200

    CAS  PubMed  Google Scholar 

  • Wieskotten S, Dehnhardt G, Mauck B, Miersch L, Hanke W (2010b) The impact of glide phases on the trackability of hydrodynamic trails in harbour seals (Phoca vitulina). J Exp Biol 213:3734–3740

    CAS  PubMed  Google Scholar 

  • Wieskotten S, Mauck B, Miersch L, Dehnhardt G, Hanke W (2011) Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J Exp Biol 214:1922–1930

    PubMed  Google Scholar 

  • Wightman FL, Kistler DJ (1997) Monaural sound localization revisited. J Acoust Soc Am 101:1050–1063

    CAS  PubMed  Google Scholar 

  • Wilson G (1970a) Some comments on the optical system of Pinnipedia as a result of observations on the Weddell seal (Leptonychotes weddelli). Br Antarct Surv Bull 23:57–63

    Google Scholar 

  • Wilson G (1970b) Vision of the Weddell seal (Leptonychotes weddelli). In: Holgate MW (ed) Antarctic ecology. Academic Press, London New York, pp 490–494

    Google Scholar 

  • Wilson B, Batty RS, Dill LM (2004) Pacific and Atlantic herring produce burst pulse sounds. Biol Lett 271:S95–S97

    Google Scholar 

  • Winter Y, Lopez J, van Helversen O (2003) Ultraviolet vision in a bat. Nature 425:12–15

    Google Scholar 

  • Witte M, Hanke W, Wieskotten S, Miersch L, Brede M, Dehnhardt G, Leder A (2012) On the wake flow dynamics behind harbor seal vibrissae—a fluid mechanical explanation for an extraordinary capability. In: Tropea C, Bleckmann H (eds) Nature-inspired fluid mechanics. Springer, Berlin, pp 241–260

    Google Scholar 

  • Wohlert D, Kröger J, Witt M et al (2016) A comparative morphometric analysis of three cranial nerves in two phocids: the hooded seal (Cystophora cristata) and the harbor seal (Phoca vitulina). Anat Rec 299:370–378

    Google Scholar 

  • Wolski LF, Anderson RC, Bowles AE, Yochem PK (2003) Measuring hearing in the harbor seal (Phoca vitulina): comparison of behavioral and auditory brainstem response techniques. J Acoust Soc Am 113:629–637

    PubMed  Google Scholar 

  • Zhao L, Schell DM (2004) Stable isotope ratios in harbor seal Phoca vitulina vibrissae: effects of growth patterns on ecological records. Mar Ecol Prog Ser 281:267–273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederike D. Hanke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanke, F.D., Reichmuth, C. (2022). Phocid Sensory Systems and Cognition. In: Costa, D.P., McHuron, E.A. (eds) Ethology and Behavioral Ecology of Phocids . Ethology and Behavioral Ecology of Marine Mammals. Springer, Cham. https://doi.org/10.1007/978-3-030-88923-4_2

Download citation

Publish with us

Policies and ethics