Abstract
Visual designs of digital signage (DS) content shape and influence consumers’ decisions. Understanding the effect of DS design on consumer behavior requires a fundamental understanding of human reasoning and decision-making. This research explores the effect of different visual design cues of DS on a neural level and through the lens of Fuzzy-Trace Theory (FTT). The FTT suggests that humans have both a verbatim-based and a gist-based information processing. To explore the effect of FTT-based visual design, an experiment using functional near-infrared spectroscopy is conducted. DS are tested on three design levels: (1) verbatim: text, (2) verbatim: photographs, and (3) gist-based. Results show that only the gist-based design resulted in significantly higher self-reported results and activated brain areas in the medial prefrontal cortex, which are associated with emotional and rewarding processing. These results challenge the manifest differentiation only between image and text elements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Grewal, D., Hulland, J., Kopalle, P.K., Karahanna, E.: The future of technology and marketing: a multidisciplinary perspective. J. Acad. Mark. Sci. 48(1), 1–8 (2019). https://doi.org/10.1007/s11747-019-00711-4
Willems, K., Smolders, A., Brengman, M., Luyten, K., Schöning, J.: The path-to-purchase is paved with digital opportunities: an inventory of shopper-oriented retail technologies. Technol. Forecast. Soc. Change 124, 228–242 (2017). https://doi.org/10.1016/j.techfore.2016.10.066
Sanden, S., Van De, Willems, K., Brengman, M.: How do consumers process digital display ads in-store? The effect of location, content, and goal relevance. J. Retail. Consum. Serv. 56, 102177 (2020). https://doi.org/10.1016/j.jretconser.2020.102177
Pantano, E., Vannucci, V.: Who is innovating? An exploratory research of digital technologies diffusion in retail industry. J. Retail. Consum. Serv. 49, 297–304 (2019). https://doi.org/10.1016/j.jretconser.2019.01.019
Newman, A., Dennis, C., Wright, L.T., King, T.: Shoppers’ experiences of digital signage-a cross-national qualitative study. Int. J. Digit. Content Technol. Appl. 4, 50–57 (2010). https://doi.org/10.4156/jdcta.vol4.issue7.5
Ballantine, P.W., Jack, R., Parsons, A.G.: Atmospheric cues and their effect on the hedonic retail experience. Int. J. Retail Distrib. Manag. 38, 641–653 (2010). https://doi.org/10.1108/09590551011057453
Roggeveen, A.L., Grewal, D., Schweiger, E.B.: The DAST framework for retail atmospherics: the impact of in- and out-of-store retail journey touchpoints on the customer experience. J. Retail. 96, 128–137 (2020). https://doi.org/10.1016/j.jretai.2019.11.002
Bauer, C., Garaus, M., Strauss, C., Wagner, U.: Research directions for digital signage systems in retail. Procedia Comput. Sci. 141, 503–506 (2018). https://doi.org/10.1016/j.procs.2018.10.135
Jäger, A.-K., Weber, A.: Increasing sustainable consumption: message framing and in-store technology. Int. J. Retail Distrib. Manag. 48, 803–824 (2020). https://doi.org/10.1108/IJRDM-02-2019-0044
Garaus, M., Wagner, U., Manzinger, S.: Happy grocery shopper: the creation of positive emotions through affective digital signage content. Technol. Forecast. Soc. Change 124, 295–305 (2017). https://doi.org/10.1016/j.techfore.2016.09.031
Wunsch, N.-G.: Forecasted online grocery market size in selected European nations from 2018 to 2023. https://www.statista.com/statistics/960484/online-grocery-market-sizes-europe/. Accessed 01 April 2021
Beharrell, B., Denison, T.J.: Involvement in a routine food shopping context. Br. Food J. 97, 24–29 (1995). https://doi.org/10.1108/00070709510085648
Behe, B.K., Huddleston, P.T., Childs, K.L., Chen, J., Muraro, I.S.: Seeing through the forest: the gaze path to purchase. PLoS ONE 15, e0240179 (2020). https://doi.org/10.1371/journal.pone.0240179
Scott, L.M.: Images in advertising: the need for a theory of visual rhetoric. J. Consum. Res. 21, 252 (1994). https://doi.org/10.1086/209396
Lavidge, R.J., Steiner, G.A.: A model for predictive measurements of advertising effectiveness. J. Mark. 25, 59 (1961). https://doi.org/10.2307/1248516
Percy, L., Rossiter, J.R.: Effects of picture size and color on brand attitude responses in print advertising. ACR North Am. Adv. Consum. Res. 10, 17–20 (1983)
Bock, M.A.: Theorising visual framing: contingency, materiality and ideology. Vis. Stud. 35, 1–12 (2020). https://doi.org/10.1080/1472586X.2020.1715244
Rodriguez, L., Dimitrova, D.V.: The levels of visual framing. J. Vis. Lit. 30, 48–65 (2011). https://doi.org/10.1080/23796529.2011.11674684
Powell, T.E., Boomgaarden, H.G., De Swert, K., de Vreese, C.H.: Framing fast and slow: a dual processing account of multimodal framing effects. Media Psychol. 22, 572–600 (2019). https://doi.org/10.1080/15213269.2018.1476891
Entman, R.M.: Framing U.S. coverage of international news: contrasts in narratives of the KAL and iran air incidents. J. Commun. 41, 6–27 (1991). https://doi.org/10.1111/j.1460-2466.1991.tb02328.x
Kim, M., Lennon, S.: The effects of visual and verbal information on attitudes and purchase intentions in internet shopping. Psychol. Mark. 25, 146–178 (2008). https://doi.org/10.1002/mar
Reyna, V.F., Brainerd, C.J.: Fuzzy-trace theory: an interim synthesis. Learn. Individ. Differ. 7, 1–75 (1995). https://doi.org/10.1016/1041-6080(95)90031-4
Reyna, V.F., Brainerd, C.J.: Fuzzy-trace theory and framing effects in choice: gist extraction, truncation, and conversion. J. Behav. Decis. Mak. 4, 249–262 (1991). https://doi.org/10.1002/bdm.3960040403
Corbin, J.C., Reyna, V.F., Weldon, R.B., Brainerd, C.J.: How reasoning, judgment, and decision making are colored by gist-based intuition: a fuzzy-trace theory approach. J. Appl. Res. Mem. Cogn. 4, 344–355 (2015). https://doi.org/10.1016/j.jarmac.2015.09.001
Reyna, V.F.: A new intuitionism: meaning, memory, and development in fuzzy-trace theory. Judgm. Decis. Mak. 7, 332–359 (2012)
Setton, R., Wilhelms, E., Weldon, B., Chick, C., Reyna, V.: An overview of judgment and decision making research through the lens of fuzzy trace theory. Adv. Psychol. Sci. 22, 1837 (2014). https://doi.org/10.3724/SP.J.1042.2014.01837
Dijksterhuis, A., Smith, P.K., van Baaren, R.B., Wigboldus, D.H.J.: The unconscious consumer: effects of environment on consumer behavior. J. Consum. Psychol. 15, 193–202 (2005). https://doi.org/10.1207/s15327663jcp1503_3
Barrett, L.F., Bar, M.: See it with feeling: affective predictions during object perception. Philos. Trans. R. Soc. B Biol. Sci. 364, 1325–1334 (2009). https://doi.org/10.1098/rstb.2008.0312
Dennis, C., Newman, A., Michon, R., Josko Brakus, J., Tiu Wright, L.: The mediating effects of perception and emotion: digital signage in mall atmospherics. J. Retail. Consum. Serv. 17, 205–215 (2010). https://doi.org/10.1016/j.jretconser.2010.03.009
Roggeveen, A.L., Nordfält, J., Grewal, D.: Do digital displays enhance sales? Role of retail format and message content. J. Retail. 92, 122–131 (2016). https://doi.org/10.1016/j.jretai.2015.08.001
Burke, R.R.: Behavioral effects of digital signage. J. Advert. Res. 49(2), 180–185 (2009). https://doi.org/10.2501/S0021849909090254
Dennis, C., Joško Brakus, J., Alamanos, E.: The wallpaper matters: digital signage as customer-experience provider at the Harrods (London, UK) department store. J. Mark. Manag. 29, 338–355 (2013). https://doi.org/10.1080/0267257X.2013.766628
Dennis, C., Joško Brakus, J., Gupta, S., Alamanos, E.: The effect of digital signage on shoppers’ behavior: the role of the evoked experience. J. Bus. Res. 67, 2250–2257 (2014). https://doi.org/10.1016/j.jbusres.2014.06.013
Lee, H., Cho, C.-H.: An empirical investigation on the antecedents of consumers’ cognitions of and attitudes towards digital signage advertising. Int. J. Advert. 38, 97–115 (2019). https://doi.org/10.1080/02650487.2017.1401509
Petty, R.E., Cacioppo, J.T.: The elaboration likelihood model of persuasion. In: Communication and Persuasion, pp. 1–24. Springer, New York, NY (1986). https://doi.org/10.1007/978-1-4612-4964-1_1
Bakker, I., van der Voordt, T., Vink, P., de Boon, J.: Pleasure, arousal, dominance: mehrabian and russell revisited. Curr. Psychol. 33(3), 405–421 (2014). https://doi.org/10.1007/s12144-014-9219-4
Mehrabian, A., Russell, J.A.: An Approach to Environmental Psychology. The MIT Press, Cambridge, MA, US (1974)
Lang, A.: The limited capacity model of mediated message processing. J. Commun. 50, 46–70 (2000). https://doi.org/10.1111/j.1460-2466.2000.tb02833.x
Lang, A.: Using the limited capacity model of motivated mediated message processing to design effective cancer communication messages. J. Commun. 56, 57–80 (2006). https://doi.org/10.1111/j.1460-2466.2006.00283.x
Broniatowski, D.A., Reyna, V.F.: A formal model of fuzzy-trace theory: variations on framing effects and the allais paradox. Decision 5, 205–252 (2018). https://doi.org/10.1037/dec0000083
Clark, H.H., Clark, E.V.: JCL volume 4 issue 2 Cover and Back matter. J. Child Lang. 4, b1–b3 (1977). https://doi.org/10.1017/S0305000900001562
Jacoby, J., Speller, D.E., Kohn, C.A.: Brand choice behavior as a function of information load. J. Mark. Res. 11, 63–69 (1974). https://doi.org/10.1177/002224377401100106
Cho, Y.H., You, M., Choi, H.: Gist-based design of graphics to reduce caffeine consumption among adolescents. Health Educ. J. 77, 778–790 (2018). https://doi.org/10.1177/0017896918765024
Wilhelms, E.A., Reyna, V.F.: Effective ways to communicate risk and benefit. AMA J. Ethics 15, 34–41 (2013). https://doi.org/10.1001/virtualmentor.2013.15.1.stas1-1301
Blalock, S.J., Reyna, V.F.: Using fuzzy-trace theory to understand and improve health judgments, decisions, and behaviors: a literature review. Heal. Psychol. 35, 781–792 (2016). https://doi.org/10.1037/hea0000384
Frank, P., Brock, C.: Bridging the intention-behavior gap among organic grocery customers: the crucial role of point-of-sale information. Psychol. Mark. 35, 586–602 (2018). https://doi.org/10.1002/mar.21108
Grewal, D., Baker, J., Levy, M., Voss, G.B.: The effects of wait expectations and store atmosphere evaluations on patronage intentions in service-intensive retail stores. J. Retail. 79, 259–268 (2003). https://doi.org/10.1016/j.jretai.2003.09.006
Gefen, D., Ayaz, H., Onaral, B.: Applying functional near infrared (fNIR) spectroscopy to enhance MIS research. AIS Trans. Hum.-Comput. Interact. 6, 55–73 (2014)
Nissen, A., Krampe, C., Kenning, P., Schütte, R.: Utilizing mobile fNIRS to investigate neural correlates of the TAM in eCommerce. In: International Conference on Information Systems (ICIS), pp. 1–9. Munich (2019)
Krampe, C., Gier, N.R., Kenning, P.: The application of mobile fnirs in marketing research—detecting the “first-choice-brand” effect. Front. Hum. Neurosci. 12, 433 (2018). https://doi.org/10.3389/fnhum.2018.00433
Gier, N.R., Kurz, J., Kenning, P.: Online reviews as marketing placebo? First insights from neuro-is utilising fNIRS. In: Twenty-eighth European Conference on Information Systems (ECIS2020), pp. 1–11. Marrakech (2020)
Santosa, H., Zhai, X., Fishburn, F., Huppert, T.: The NIRS brain AnalyzIR toolbox. Algorithms 11, 73 (2018). https://doi.org/10.3390/a11050073
Taren, A.A., Venkatraman, V., Huettel, S.A.: A parallel functional topography between medial and lateral prefrontal cortex: evidence and implications for cognitive control. J. Neurosci. 31, 5026–5031 (2011)
Heekeren, H.R., Marrett, S., Ruff, D.A., Bandettini, P.A., Ungerleider, L.G.: Involvement of human left dorsolateral prefrontal cortex in perceptual decision making is independent of response modality. Proc. Natl. Acad. Sci. 103, 10023–10028 (2006). https://doi.org/10.1073/pnas.0603949103
Sakagami, M., Pan, X.: Functional role of the ventrolateral prefrontal cortex in decision making. Curr. Opin. Neurobiol. 17, 228–233 (2007). https://doi.org/10.1016/j.conb.2007.02.008
Plassmann, H., O’Doherty, J., Rangel, A.: Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. J. Neurosci. 27, 9984–9988 (2007). https://doi.org/10.1523/JNEUROSCI.2131-07.2007
Kühn, S., Gallinat, J.: The neural correlates of subjective pleasantness. Neuroimage 61, 289–294 (2012). https://doi.org/10.1016/j.neuroimage.2012.02.065
Britton, J.C., Phan, K.L., Taylor, S.F., Welsh, R.C., Berridge, K.C., Liberzon, I.: Neural correlates of social and nonsocial emotions: an fMRI study. Neuroimage 31, 397–409 (2006). https://doi.org/10.1016/j.neuroimage.2005.11.027
Etkin, A., Egner, T., Kalisch, R.: Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15, 85–93 (2011). https://doi.org/10.1016/j.tics.2010.11.004
Dolcos, F., Iordan, A.D., Dolcos, S.: Neural correlates of emotion–cognition interactions: a review of evidence from brain imaging investigations. J. Cogn. Psychol. 23, 669–694 (2011). https://doi.org/10.1080/20445911.2011.594433
Wager, T.D., Davidson, M.L., Hughes, B.L., Lindquist, M.A., Ochsner, K.N.: Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59, 1037–1050 (2008). https://doi.org/10.1016/j.neuron.2008.09.006
Ellard, K.K., Barlow, D.H., Whitfield-Gabrieli, S., DE Gabrieli, J., Deckersbach, T.: Neural correlates of emotion acceptance vs worry or suppression in generalized anxiety disorder. Soc. Cogn. Affect. Neurosci. 12, 1009–1021 (2017). https://doi.org/10.1093/scan/nsx025
Huppert, T.J.: Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy. Neurophotonics 3, 010401 (2016). https://doi.org/10.1117/1.NPh.3.1.010401
Saager, R.B., Berger, A.J.: Direct characterization and removal of interfering absorption trends in two-layer turbid media. J. Opt. Soc. Am. A 22, 1874 (2005). https://doi.org/10.1364/JOSAA.22.001874
Scholkmann, F., et al.: A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 85, 6–27 (2014). https://doi.org/10.1016/j.neuroimage.2013.05.004
Delpy, D.T., Cope, M., van der Zee, P., Arridge, S., Wyatt, S.W.S.: Estimation of optical pathlength through tissue from direct time of flight measurement. Phys. Med. Biol. 33, 1433 (1988)
Kocsis, L., Herman, P., Eke, A.: The modified beer-lambert law revisited. Phys. Med. Biol. 51, N91 (2006)
Barker, J.W., Aarabi, A., Huppert, T.J.: Autoregressive model based algorithm for correcting motion and serially correlated errors in fNIRS. Biomed. Opt. Express. 4, 1366 (2013). https://doi.org/10.1364/BOE.4.001366
Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995). https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Schienle, A., Wabnegger, A., Schoengassner, F., Scharmüller, W.: Neuronal correlates of three attentional strategies during affective picture processing: an fMRI study. Cogn. Affect. Behav. Neurosci. 14(4), 1320–1326 (2014). https://doi.org/10.3758/s13415-014-0274-y
Killgore, W.D.S., Yurgelun-Todd, D.A.: The right-hemisphere and valence hypotheses: could they both be right (and sometimes left)? Soc. Cogn. Affect. Neurosci. 2, 240–250 (2007). https://doi.org/10.1093/scan/nsm020
Brown, S., Gao, X., Tisdelle, L., Eickhoff, S.B., Liotti, M.: Naturalizing aesthetics: brain areas for aesthetic appraisal across sensory modalities. Neuroimage 58, 250–258 (2011). https://doi.org/10.1016/j.neuroimage.2011.06.012
Cela-Conde, C.J., et al.: Dynamics of brain networks in the aesthetic appreciation. Proc. Natl. Acad. Sci. 110, 10454–10461 (2013). https://doi.org/10.1073/pnas.1302855110
Reyna, V.F., Helm, R.K., Weldon, R.B., Shah, P.D., Turpin, A.G., Govindgari, S.: Brain activation covaries with reported criminal behaviors when making risky choices: a fuzzy-trace theory approach. J. Exp. Psychol. Gen. 147, 1094–1109 (2018). https://doi.org/10.1037/xge0000434
Turney, D.: Teaching computers the meaning of words. https://www.smh.com.au/technology/teaching-computers-the-meaning-of-words-20131002-hv1v2.html. Accessed 31 March 2021
Garrido-Morgado, Á., González-Benito, Ó., Martos-Partal, M., Campo, K.: Which products are more responsive to in-store displays: utilitarian or hedonic? J. Retail. 67(3), 477–491 (2020). https://doi.org/10.1016/j.jretai.2020.10.005
Eisenbeiss, M., Wilken, R., Skiera, B., Cornelissen, M.: What makes deal-of-the-day promotions really effective? The interplay of discount and time constraint with product type. Int. J. Res. Mark. 32, 387–397 (2015). https://doi.org/10.1016/j.ijresmar.2015.05.007
Müller, J., et al.: Display blindness: the effect of expectations on attention towards digital signage. In: Tokuda, H., Beigl, M., Friday, A., Brush, A.J.B., Tobe, Y. (eds.) Pervasive 2009. LNCS, vol. 5538, pp. 1–8. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01516-8_1
Dalton, N.S., Collins, E., Marshall, P.: Display Blindness?, pp. 3889–3898 (2015). https://doi.org/10.1145/2702123.2702150
Willems, K., Brengman, M., van de Sanden, S.: In-store proximity marketing: experimenting with digital point-of-sales communication. Int. J. Retail Distrib. Manag. 45, 910–927 (2017). https://doi.org/10.1108/IJRDM-10-2016-0177
Bhatti, A., et al.: E-Commerce trends during COVID-19 Pandemic. Int. J. Futur. Gener. Commun. Netw. 13, 1449–1452 (2020)
Acknowledgements
Part of this work was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 765395.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nissen, A., Obermeier, G., Gier, N.R., Schütte, R., Auinger, A. (2021). Consumers Prefer Abstract Design in Digital Signage: An Application of Fuzzy-Trace Theory in NeuroIS. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, PM., Randolph, A.B., Müller-Putz, G. (eds) Information Systems and Neuroscience. NeuroIS 2021. Lecture Notes in Information Systems and Organisation, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-030-88900-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-88900-5_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88899-2
Online ISBN: 978-3-030-88900-5
eBook Packages: Computer ScienceComputer Science (R0)