Skip to main content

Predicting In-Field Flow Experiences Over Two Weeks from ECG Data: A Case Study

  • Conference paper
  • First Online:
Information Systems and Neuroscience (NeuroIS 2021)

Part of the book series: Lecture Notes in Information Systems and Organisation ((LNISO,volume 52))

Included in the following conference series:

Abstract

Predicting flow intensities from unobtrusively collected sensor data is considered an important yet challenging endeavor for NeuroIS scholars aiming to understand and support flow during IS use. In this direction, a limitation has been the focus on cross-subject models built on data collected in controlled laboratory settings. We investigate the potential of predicting flow in the field through personalized models by collecting report and ECG data from a clerical worker over the course of two weeks. Results indicate that a lack of variation in flow experiences during this time likely diminished these potentials. Through pre-training feature selection methods, model accuracies could be achieved that nonetheless approach related cross-subject flow prediction work. Novel recommendations are developed that could introduce more flow variation in future flow field studies to further investigate the within-subject predictability of flow based on wearable physiological sensor data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spurlin, S., Csikszentmihalyi, M.: Will work ever be fun again? In: Fullagar, C.J., Delle Fave, A. (eds.) Flow at Work: Measurement and Implications, pp. 176–187 (2017)

    Google Scholar 

  2. Riedl, R., Fischer, T., Léger, P.-M., Davis, F.D.: A decade of NeuroIS research: progress, challenges, and future directions. ACM SIGMIS Database DATABASE Adv. Inf. Syst. 51, 13–54 (2020)

    Google Scholar 

  3. Knierim, M.T., Rissler, R., Hariharan, A., Nadj, M., Weinhardt, C.: Exploring flow psychophysiology in knowledge work. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 29, pp. 239–249. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01087-4_29

    Chapter  Google Scholar 

  4. Rissler, R., Nadj, M., Li, M.X., Knierim, M.T., Maedche, A.: Got flow? Using machine learning on physiological data to classify flow. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–6 (2018)

    Google Scholar 

  5. Moneta, G.B.: On the measurement and conceptualization of flow. In: Engeser, S. (ed.) Advances in Flow Research, pp. 23–50 (2012)

    Google Scholar 

  6. Szegletes, L., Köles, M., Forstner, B.: The design of a biofeedback framework for dynamic difficulty adjustment in games. In: Proceedings of 5th IEEE International Conference on Cognitive Infocommunications, CogInfoCom 2014, pp. 295–299 (2014)

    Google Scholar 

  7. Rissler, R., Nadj, M., Li, M.X., Loewe, N., Knierim, M.T., Maedche, A.: To be or not to be in flow at work: physiological classification of flow using machine learning. IEEE Trans. Affect. Comput. 1–12 (2020)

    Google Scholar 

  8. Maier, M., Elsner, D., Marouane, C., Zehnle, M., Fuchs, C.: DeepFlow: detecting optimal user experience from physiological data using deep neural networks. In: IJCAI International Joint Conference on Artificial Intelligence, pp. 1415–1421 (2019)

    Google Scholar 

  9. Chanel, G., Rebetez, C., Bétrancourt, M., Pun, T.: Emotion assessment from physiological signals for adaptation of game difficulty. IEEE Trans. Syst. Man, Cybern. Part A Syst. Hum. 41, 1052–1063 (2011)

    Google Scholar 

  10. Berta, R., Bellotti, F., Gloria, A.D., Pranantha, D., Schatten, C.: Electroencephalogram and physiological signal analysis for assessing flow in games. IEEE Trans. Comput. Intell. AI Games 5, 164–175 (2013)

    Article  Google Scholar 

  11. Rouast, P.V., Adam, M.T.P., Chiong, R., Cornforth, D.J., Lux, E.: Remote heart rate measurement using low-cost RGB face video: a technical literature review. Front. Comput. Sci. 12, 858–872 (2018)

    Google Scholar 

  12. Gaggioli, A., Cipresso, P., Serino, S., Riva, G.: Psychophysiological correlates of flow during daily activities. In: Wiederhold, B.K., Riva, G. (eds.) Annual Review of Cybertherapy and Telemedicine, pp. 65–69. IOS Press (2013)

    Google Scholar 

  13. Nakamura, J., Csikszentmihalyi, M.: Flow theory and research. In: Lopez, S., Snyder, C.R. (eds.) Oxford Handbook of Positive Psychology, pp. 195–206. Oxford University Press, New York (2009)

    Google Scholar 

  14. Léger, P.M., Davis, F.D., Cronan, T.P., Perret, J.: Neurophysiological correlates of cognitive absorption in an enactive training context. Comput. Hum. Behav. 34, 273–283 (2014)

    Article  Google Scholar 

  15. Peifer, C., Schulz, A., Schächinger, H., Baumann, N., Antoni, C.H.: The relation of flow-experience and physiological arousal under stress - can u shape it? J. Exp. Soc. Psychol. 53, 62–69 (2014)

    Article  Google Scholar 

  16. Labonté-Lemoyne, É., et al.: Are we in flow? Neurophysiological correlates of flow states in a collaborative game. In: Proceedings of the 2016 CHI Conference, pp. 1980–1988 (2016)

    Google Scholar 

  17. Csikszentmihalyi, M., Hunter, J.: Happiness in everyday life: the uses of experience sampling. J. Happiness Stud. 4, 185–199 (2003)

    Article  Google Scholar 

  18. Knierim, M.T., Rissler, R., Dorner, V., Maedche, A., Weinhardt, C.: The psychophysiology of flow: a systematic review of peripheral nervous system features. In: Proceedings of the 9th Retreat on NeuroIS, pp. 109–120 (2017)

    Google Scholar 

  19. Peifer, C.: Psychophysiological correlates of flow-experience. In: Engeser, S. (ed.) Advances in Flow Research, pp. 139–164. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-2359-1_8

  20. Jaque, S.V., Karamanukyan, I.H., Thomson, P.: A psychophysiological case study of orchestra conductors. Med. Probl. Perform. Art. 30, 189–196 (2015)

    Article  Google Scholar 

  21. Harmat, L., et al.: Heart rate variability during piano playing: a case study of three professional solo pianists playing a self-selected and a difficult prima vista piece. Music Med. 3, 102–107 (2011)

    Article  Google Scholar 

  22. Engeser, S., Rheinberg, F.: Flow, performance and moderators of challenge-skill balance. Motiv. Emot. 32, 158–172 (2008)

    Article  Google Scholar 

  23. Quinn, R.W.: Flow in knowledge performance experience. Adm. Sci. Q. 50, 610–641 (2005)

    Article  Google Scholar 

  24. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32, 230–236 (1985)

    Article  Google Scholar 

  25. Gomes, P., Margaritoff, P., Silva, H.: Development of an open-source Python toolbox for heart rate variability (pyHRV). In: Proceedings of International Conference on Electrical, Electronic and Computing Engineering (IcETRAN), pp. 822–828 (2019)

    Google Scholar 

  26. Shaffer, F., Ginsberg, J.P.: An overview of heart rate variability metrics and norms. Front. Public Heal. 5, 1–17 (2017)

    Google Scholar 

  27. Berntson, G.G., Quigley, K.S., Lozano, D.: Cardiovascular psychophysiology. In: Cacioppo, J.T., Tassinary, L.G., Berntson, G.G. (eds.) Handbook of Psychophysiology, pp. 182–210. Cambridge University Press, Cambridge (2007)

    Chapter  Google Scholar 

  28. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 58, 267–288 (1996)

    Google Scholar 

  29. Keller, J.: The flow experience revisited: the influence of skills-demands-compatibility on experiential and physiological indicators. In: Harmat, L., Ørsted Andersen, F., Ullén, F., Wright, J., Sadlo, G. (eds.) Flow Experience, pp. 351–374. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28634-1_21

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Knierim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Knierim, M.T., Pieper, V., Schemmer, M., Loewe, N., Reali, P. (2021). Predicting In-Field Flow Experiences Over Two Weeks from ECG Data: A Case Study. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, PM., Randolph, A.B., Müller-Putz, G. (eds) Information Systems and Neuroscience. NeuroIS 2021. Lecture Notes in Information Systems and Organisation, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-030-88900-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88900-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88899-2

  • Online ISBN: 978-3-030-88900-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics