Skip to main content

Septal Defects: Clinical Concepts, Engineering Applications, and Impact of an Integrated Medico-Engineering Approach: Occluder Devices

  • Chapter
  • First Online:
Modelling Congenital Heart Disease

Abstract

Atrial septal defect and ventricular septal defect are the most common congenital heart diseases. These congenital defects produce a pulmonary blood flow overload with consequent risk of heart failure and pulmonary hypertension. Currently, various percutaneous occluder devices are available to achieve the closure, avoiding a surgical procedure. This chapter is introducing the features of the different occluder devices highlighting their advantages and disadvantages as well as the future perspective of biomedical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman JIE, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.

    Article  PubMed  Google Scholar 

  2. Soto B, Becker AE, Moulaert AJ, Lie JT, Anderson RH. Classification of ventricular septal defects. Br Heart J. 1980;43(3):332–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Donald DE, Edwards JE, Harshbarger HG, Kirklin JW. Surgical correction of ventricular septal defect: anatomic and technical considerations. J Thorac Surg. 1957;33(1):45–59.

    Article  CAS  PubMed  Google Scholar 

  4. Van Praagh R, Geva T, Kreutzer J. Ventricular septal defects: how shall we describe, name and classify them? J Am Coll Cardiol. 1989;14(5):1298–9.

    Article  PubMed  Google Scholar 

  5. Lopez L, Houyel L, Colan SD, Anderson RH, Béland MJ, Aiello VD, Bailliard F, Cohen MS, Jacobs JP, Kurosawa H, Sanders SP, Walters HL 3rd, Weinberg PM, Boris JR, Cook AC, Crucean A, Everett AD, Gaynor JW, Giroud J, Guleserian KJ, Hughes ML, Juraszek AL, Krogmann ON, Maruszewski BJ, St Louis JD, Seslar SP, Spicer DE, Srivastava S, Stellin G, Tchervenkov CI, Wang L, Franklin RCG. Classification of ventricular septal defects for the eleventh iteration of the international classification of diseases-striving for consensus: a report from the International Society for Nomenclature of Paediatric and congenital heart disease. Ann Thorac Surg. 2018;106(5):1578–89.

    Article  PubMed  Google Scholar 

  6. Agmon Y, Connolly HM, Olson LJ, Khandheria BK, Seward JB. Noncompaction of the ventricular myocardium. J Am Soc Echocardiogr. 1999;12(10):859–63.

    Article  CAS  PubMed  Google Scholar 

  7. Gerbode F, Hultgren H, Melrose D, Osborn J. Syndrome of left ventricular-right atrial shunt; successful surgical repair of defect in five cases, with observation of bradycardia on closure. Ann Surg. 1958;148(3):433–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scott RC, McGuire J, Kaplan S, Fowler NO, Green RS, Gordon LZ, Shabetai R, Davolos DD. The syndrome of ventricular septal defect with aortic insufficiency. Am J Cardiol. 1958;2(5):530–53.

    Article  CAS  PubMed  Google Scholar 

  9. Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, Crumb SR, Dearani JA, Fuller S, Gurvitz M, Khairy P, Landzberg MJ, Saidi A, Valente AM, Van Hare GF. 2018 AHA/ACC guideline for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2019;139:e698–800.

    PubMed  Google Scholar 

  10. Schubert S, Kelm M, Koneti NR, Berger F. First European experience of percutaneous closure of ventricular septal defects using a new CE-marked VSD occlude. EuroIntervention. 2019;15:e242–3.

    Article  PubMed  Google Scholar 

  11. Haponiuk I, Chojnicki M, Jaworski R, Steffek M, Juscinski J, Sroka M, Fiszer R, Sendrowska A, Gierat-Haponiuk K, Maruszewski B. Hybrid approach for closure of muscular ventricular septal defects. Med Sci Monit. 2013;19:618–24.

    Article  PubMed  PubMed Central  Google Scholar 

  12. El-Sisi A, Sobhy R, Jaccoub V, Hamza H. Perimembranous ventricular septal defect device closure: choosing between Amplatzer duct Occluder I and II. Pediatr Cardiol. 2017;38(3):596–602.

    Article  PubMed  Google Scholar 

  13. Hua N, Aquino P, Owada CY. Transcatheter closure of perimembranous ventricular septal defects with the Amplatzer vascular plug-II. Cardiol Young. 2016;26(6):1194–201.

    Article  PubMed  Google Scholar 

  14. Chang H, Hung CR, Huang FY, Wu GJ. Hemolysis following correction of ventricular septal defect. J Formos Med Assoc. 1990;89(11):1004–8.

    Article  CAS  PubMed  Google Scholar 

  15. Hong ZN, Chen Q, Huang LQ, Cao H. A meta-analysis of perventricular device closure of perimembranous ventricular septal defect. J Cardiothorac Surg. 2019;14(1):119.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Anderson RH, Brown NA, Webb S. Development and structure of the atrial septum. Heart. 2002;88:104–10.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Raghib G, Ruttenberg HD, Anderson RC, et al. Termination of left superior vena cava in left atrium, atrial septal defect, and absence of coronary sinus; a developmental complex. Circulation. 1965;31:906–18.

    Article  CAS  PubMed  Google Scholar 

  18. Saxena A, Divekar A, Soni NR. Natural history of secundum atrial septal defect revisited in the era of transcatheter closure. Indian Heart J. 2005;57:35–8.

    PubMed  Google Scholar 

  19. Cockerham JT, Martin TC, Gutierrez FR, et al. Spontaneous closure of secundum atrial septal defect in infants and young children. Am J Cardiol. 1983;52:1267–71.

    Article  CAS  PubMed  Google Scholar 

  20. Santoro G, Gaio G, Russo MG. Transcatheter treatment of unroofed coronary sinus. Catheter Cardiovasc Interv. 2013;81(5):849–52.

    Article  PubMed  Google Scholar 

  21. Butera G, Sturla F, Pluchinotta FR, Caimi A, Carminati M. Holographic augmented reality and 3D printing for advanced planning of sinus venosus ASD/partial anomalous pulmonary venous return percutaneous management. JACC Cardiovasc Interv. 2019;12(14):1389–91.

    Article  PubMed  Google Scholar 

  22. Mazic U, Gavora P, Masura J. The role of transesophageal echocardiography in transcatheter closure of secundum atrial septal defects by the Amplatzer septal occluder. Am Heart J. 2001;142:482–8.

    Article  CAS  PubMed  Google Scholar 

  23. Berger F, Ewert P, Abdul-Khaliq H, et al. Percutaneous closure of large atrial septal defects with the Amplatzer septal occluder: technical overkill or recommendable alternative treatment? J Interv Cardiol. 2001;14:63–7.

    Article  CAS  PubMed  Google Scholar 

  24. Varma C, Benson LN, Silversides C, et al. Outcomes and alternative techniques for device closure of the large secundum atrial septal defect. Cathet Cardiovasc Interven. 2004;61:131–9.

    Article  Google Scholar 

  25. Wahab HA, Bairam AR, Cao QL, Hijazi ZM. Novel technique to prevent prolapse of the Amplatzer septal occluder through large atrial septal defect. Cathet Cardiovasc Interven. 2003;60:543–5.

    Article  Google Scholar 

  26. Dalvi BV, Pinto RJ, Gupta A. New technique for device closure of large atrial septal defects. Cathet Cardiovasc Interven. 2005;64:102–7.

    Article  Google Scholar 

  27. Santoro G, Giordano M, Palladino MT, et al. ASD closure in special situations: elderly, PA-IVS. In: Butera G, Chessa M, Eicken A, Thomson J, editors. Atlas of cardiac catheterization for congenital heart disease. Cham: Springer; 2019.

    Google Scholar 

  28. Tufaro V, Butera G. Fenestrated ASD device “angioplasty”: how to adjust a "pop-off" mechanism when needed. Catheter Cardiovasc Interv. 2018;92(7):1329–33.

    Article  PubMed  Google Scholar 

  29. Mazic U, Gavora P, Masura J. “Cobra-like” deformation of an Amplatzer septal occluder. Pediatr Cardiol. 2001;22(3):253–4.

    Article  CAS  PubMed  Google Scholar 

  30. Butera G, Montinaro A, Carminati M. The “pull-push” technique to deal with a redundant Eustachian valve interfering with placement of a PFO occluder. Catheter Cardiovasc Interv. 2006;68:961–4.

    Article  PubMed  Google Scholar 

  31. McElhinney DB, Quartermain MD, Kenny D, Alboliras E, Amin Z. Relative risk factors for cardiac erosion following transcatheter closure of atrial septal defects a case–control study. Circulation. 2016;133:1738–46.

    Article  PubMed  Google Scholar 

  32. Scognamiglio G, Barracano R, Colonna D, Mattera Iacono A, Santoro G, Spadafora A, Nappi G, Russo MG, Sarubbi B. A very late life-threatening complication after percutaneous closure of an atrial septal defect. Can J Cardiol. 2017;33(2):293.e1–2.

    Article  Google Scholar 

  33. Qureshi AM, Mumtaz MA, Latson LA. Partial prolapse of a HELEX device associated with early frame fracture and mitral valve perforation. Catheter Cardiovasc Interv. 2009;74(5):777–82.

    Article  PubMed  Google Scholar 

  34. Singh HR, Turner DR, Forbes TJ. Nickel allergy and the amplatzer septal occluder. J Invasive Cardiol. 2004;16(11):681–2.

    PubMed  Google Scholar 

  35. Bissessor N. Current perspectives in percutaneous atrial septal defect closure devices. Med Dev (Auckl). 2015;8:297–303.

    CAS  Google Scholar 

  36. Sigler M, Jux C. Biocompatibility of septal defect closure devices. Heart. 2007;93:444–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tang B, Su F, Sun X, Wu Q, Xing Q, Li S. Recent development of transcatheter closure of atrial septal defect and patent foramen ovale with occluders. J Biomed Mater Res B Appl Biomater. 2018;106(1):433–43.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu YF, Huang XM, Cao J, Hu JQ, Bai Y, Jiang HB, Li ZF, Chen Y, Wang W, Qin YW, Zhao XX. Animal experimental study of the fully biodegradable atrial septal defect (ASD) occluder. J Biomed Biotechnol. 2012;2012:735989.

    PubMed  PubMed Central  Google Scholar 

  39. Shi D, Kang Y, Zhang G, Gao C, Lu W, Zou H, Jiang H. Biodegradable atrial septal defect occluders: a current review. Acta Biomater. 2019;96:68–80.

    Article  CAS  PubMed  Google Scholar 

  40. Carminati M, Chessa M, Butera G, Bini RM, Giusti S, Festa P, Spadoni I, Redaelli S, Hausdorf G. Transcatheter closure of atrial septal defects with the STARFlex device: early results and follow-up. J Interv Cardiol. 2001;14(3):319–24.

    Article  CAS  PubMed  Google Scholar 

  41. Morgan G, Lee KJ, Chaturvedi R, Benson L. A biodegradable device (BioSTAR) for atrial septal defect closure in children. Catheter Cardiovasc Interv. 2010;76(2):241–5.

    Article  PubMed  Google Scholar 

  42. Huang Y, Wong YS, Ng HCA, Boey FYC, Venkatraman S. Translation in cardiovascular stents and occluders: from biostable to fully degradable. Bioeng Transl Med. 2017;2(2):156–69.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hoehn R, Hesse C, Ince H, Peuster M. First experience with the BioSTAR-device for various applications in pediatric patients with congenital heart disease. Catheter Cardiovasc Interv. 2010;75(1):72–7.

    PubMed  Google Scholar 

  44. Jux C, Bertram H, Wohlsein P, Bruegmann M, Paul T. Interventional atrial septal defect closure using a totally bioresorbable occluder matrix: development and preclinical evaluation of the BioSTAR device. J Am Coll Cardiol. 2006;48(1):161–9.

    Article  PubMed  Google Scholar 

  45. Mullen MJ, Hildick-Smith D, De Giovanni JV, Duke C, Hillis WS, Morrison WL, Jux C. BioSTAR evaluation STudy (BEST): a prospective, multicenter, phase I clinical trial to evaluate the feasibility, efficacy, and safety of the BioSTAR bioabsorbable septal repair implant for the closure of atrial-level shunts. Circulation. 2006;114(18):1962–7.

    Article  CAS  PubMed  Google Scholar 

  46. Van den Branden BJ, Post MC, Plokker HW, ten Berg JM, Suttorp MJ. Patent foramen ovale closure using a bioabsorbable closure device: safety and efficacy at 6-month follow-up. JACC Cardiovasc Interv. 2010;3(9):968–73.

    Article  PubMed  Google Scholar 

  47. Pavcnik D, Tekulve K, Uchida BT, Luo ZH, Jeromel M, Van Alstine WG, Keller FS, Rösch J. Double BioDisk: a new bioprosthetic device for transcatheter closure of atrial septal defects—a feasibility study in adult sheep. Radiol Oncol. 2012;46(2):89–96.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sigler M, Söderberg B, Schmitt B, Mellmann A, Bernhard J. Carag bioresorbable septal occluder (CBSO): histopathology of experimental implants. EuroIntervention. 2018;13(14):1655–61.

    Article  PubMed  Google Scholar 

  49. Sievert H, Söderberg B, Mellmann A, Bernhard J, Gafoor S, EuroIntervention first human use and intermediate follow-up of a septal occluder with a bioresorbable framework. EuroPCR, 2015; Paris.

    Google Scholar 

  50. Kenny DP, Hijazi ZM. Current status and future potential of transcatheter interventions in congenital heart disease. Circ Res. 2017;120(6):1015–26.

    Article  CAS  PubMed  Google Scholar 

  51. Duong-Hong D, Tang YD, Wu W, Venkatraman SS, Boey F, Lim J, Yip J. Fully biodegradable septal defect occluder-a double umbrella design. Catheter Cardiovasc Interv. 2010;76(5):711–8.

    Article  PubMed  Google Scholar 

  52. Huang Y, Wong YS, Wu J, Kong JF, Chan JN, Khanolkar L, Rao DP, Boey FY, Venkatraman SS. The mechanical behavior and biocompatibility of polymer blends for patent ductus arteriosus (PDA) occlusion device. J Mech Behav Biomed Mater. 2014;36:143–60.

    Article  CAS  PubMed  Google Scholar 

  53. Liu SJ, Peng KM, Hsiao CY, Liu KS, Chung HT, Chen JK. Novel biodegradable polycaprolactone occlusion device combining nanofibrous PLGA/collagen membrane for closure of atrial septal defect (ASD). Ann Biomed Eng. 2011;39(11):2759–66.

    Article  PubMed  Google Scholar 

  54. Xie ZF, Wang SS, Zhang ZW, Zhuang J, Liu XD, Chen XM, Zhang G, Zhang D. A novel-design poly-l-lactic acid biodegradable device for closure of atrial septal defect: long-term results in swine. Cardiology. 2016;135(3):179–87.

    Article  CAS  PubMed  Google Scholar 

  55. Li BN, Xie YM, Xie ZF, Chen XM, Zhang G, Zhang DY, Liu XD, Zhang ZW. Study of biodegradable occluder of atrial septal defect in a porcine model. Catheter Cardiovasc Interv. 2019;93(1):E38–45.

    PubMed  Google Scholar 

  56. Wu W, Yip J, Tang YD, Khoo V, Kong JF, Duong-Hong D, Boey F, Venkatraman SS. A novel biodegradable septal defect occluder: the "Chinese lantern" design, proof of concept. Innovations (Phila). 2011;6(4):221–30.

    Article  Google Scholar 

  57. Lu W, Ouyang W, Wang S, Liu Y, Zhang F, Wang W, Pan X. A novel totally biodegradable device for effective atrial septal defect closure: a 2-year study in sheep. J Interv Cardiol. 2018;31(6):841–8.

    Article  PubMed  Google Scholar 

  58. Zhu Y, Liu J, Wang L, Guan X, Luo Y, Geng J, Geng Q, Lin Y, Zhang L, Li X, Lu Y. Preliminary study of the application of transthoracic echocardiography-guided three-dimensional printing for the assessment of structural heart disease. Echocardiography. 2017;34(12):1903–8.

    Article  PubMed  Google Scholar 

  59. Huang XM, Zhu YF, Cao J, Hu JQ, Bai Y, Jiang HB, Li ZF, Chen Y, Wang W, Qin YW. Development and preclinical evaluation of a biodegradable ventricular septal defect occluder. Catheter Cardiovasc Interv. 2013;81(2):324–30.

    Article  PubMed  Google Scholar 

  60. Balk M, Behl M, Wischke C, Zotzmann J, Lendlein A. Recent advances in degradable lactide-based shape-memory polymers. Adv Drug Deliv Rev. 2016;107:136–52.

    Article  CAS  PubMed  Google Scholar 

  61. Cha KJ, Lih E, Choi J, Joung YK, Ahn DJ, Han DK. Shape-memory effect by specific biodegradable polymer blending for biomedical applications. Macromol Biosci. 2014;14(5):667–78.

    Article  CAS  PubMed  Google Scholar 

  62. Hardy JG, Palma M, Wind SJ, Biggs MJ. Responsive biomaterials: advances in materials based on shape-memory polymers. Adv Mater. 2016;28(27):5717–24.

    Article  CAS  PubMed  Google Scholar 

  63. Xu J, Song J. Polylactic acid (PLA)-based shape-memory materials for biomedical applications. In: Shape memory polymers for biomedical applications. Elsevier Ltd.; 2015. p. 197–217.

    Chapter  Google Scholar 

  64. Zheng Y, Li Y, Hu X, Shen J, Guo S. Biocompatible shape memory blend for self-expandable stents with potential biomedical applications. ACS Appl Mater Interfaces. 2017;9(16):13988–98.

    Article  CAS  PubMed  Google Scholar 

  65. Jia H, Gu S-Y, Chang K. 3D printed self-expandable vascular stents from biodegradable shape memory polymer. Adv Polym Technol. 2018;37:3222–8.

    Article  CAS  Google Scholar 

  66. Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S. 3D printing of shape memory polymers for flexible electronic devices. Adv Mater. 2016;28(22):4449–54.

    Article  CAS  PubMed  Google Scholar 

  67. Noecker AM, Chen JF, Zhou Q, White RD, Kopcak MW, Arruda MJ, Duncan BW. Development of patient-specific three-dimensional pediatric cardiac models. ASAIO J. 2006;52(3):349–53.

    Article  PubMed  Google Scholar 

  68. Wang Z, Liu Y, Xu Y, Gao C, Chen Y, Luo H. Three-dimensional printing-guided percutaneous transcatheter closure of secundum atrial septal defect with rim deficiency: first-in-human series. Cardiol J. 2016;23(6):599–603.

    Article  CAS  PubMed  Google Scholar 

  69. Milano EG, Capelli C, Wray J, Biffi B, Layton S, Lee M, Caputo M, Taylor AM, Schievano S, Biglino G. Current and future applications of 3D printing in congenital cardiology and cardiac surgery. Br J Radiol. 2019;92(1094):20180389.

    Article  PubMed  Google Scholar 

  70. Olivieri LJ, Krieger A, Loke YH, Nath DS, Kim PC, Sable CA. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. J Am Soc Echocardiogr. 2015;28(4):392–7.

    Article  PubMed  Google Scholar 

  71. Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD. Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation. 2008;117(18):2388–94.

    Article  PubMed  Google Scholar 

  72. He L, Cheng GS, Du YJ, Zhang YS. Feasibility of device closure for multiple atrial septal defects with an inferior sinus venosus defect: procedural planning using three-dimensional printed models. Heart Lung Circ. 2020;29(6):914–20.

    Article  PubMed  Google Scholar 

  73. Li P, Fang F, Qiu X, Xu N, Wang Y, Ouyang WB, Zhang FW, Hu HB, Pan XB. Personalized three-dimensional printing and echoguided procedure facilitate single device closure for multiple atrial septal defects. J Interv Cardiol. 2020;2020:1751025.

    PubMed  PubMed Central  Google Scholar 

  74. Velasco Forte MN, Byrne N, Valverde I, Gomez Ciriza G, Hermuzi A, Prachasilchai P, Mainzer G, Pushparajah K, Henningsson M, Hussain T, Qureshi S, Rosenthal E. Interventional correction of sinus venosus atrial septal defect and partial anomalous pulmonary venous drainage: procedural planning using 3D printed models. JACC Cardiovasc Imaging. 2018;11(2 Pt 1):275–8.

    Article  PubMed  Google Scholar 

  75. Yan C, Wang C, Pan X, Li S, Song H, Liu Q, Xu N, Wang J. Three-dimensional printing assisted transcatheter closure of atrial septal defect with deficient posterior-inferior rim. Catheter Cardiovasc Interv. 2018;92(7):1309–14.

    Article  PubMed  Google Scholar 

  76. Mashiko T, Otani K, Kawano R, Konno T, Kaneko N, Ito Y, Watanabe E. Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World Neurosurg. 2015;83(3):351–61.

    Article  PubMed  Google Scholar 

  77. Schmauss D, Haeberle S, Hagl C, Sodian R. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-Centre experience. Eur J Cardiothorac Surg. 2015;47(6):1044–52.

    Article  PubMed  Google Scholar 

  78. Hunter KS, Lanning CJ, Chen SY, Zhang Y, Garg R, Ivy DD, Shandas R. Simulations of congenital septal defect closure and reactivity testing in patient-specific models of the pediatric pulmonary vasculature: a 3D numerical study with fluid-structure interaction. J Biomech Eng. 2006;128(4):564–72.

    Article  PubMed  Google Scholar 

  79. Rigatelli G, Zuin M, Fong A. Computational flow dynamic analysis of right and left atria in patent foramen Ovale: potential links with atrial fibrillation. J Atr Fibrillation. 2018;10(5):1852.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lee W, Jung E. A multiscale model of cardiovascular system including an immersed whole heart in the cases of normal and ventricular septal defect (VSD). Bull Math Biol. 2015;77(7):1349–76.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giordano, M., Bosi, G., Butera, G. (2022). Septal Defects: Clinical Concepts, Engineering Applications, and Impact of an Integrated Medico-Engineering Approach: Occluder Devices. In: Butera, G., Schievano, S., Biglino, G., McElhinney, D.B. (eds) Modelling Congenital Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-88892-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88892-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88891-6

  • Online ISBN: 978-3-030-88892-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics