Abstract
Recent works about ecumenical systems, where connectives from classical and intuitionistic logics can co-exist in peace, warmed the discussion on proof systems for combining logics. This discussion has been extended to alethic modalities using Simpson’s meta-logical characterization: necessity is independent of the viewer, while possibility can be either intuitionistic or classical. In this work, we propose a pure, label free calculus for ecumenical modalities, \(\mathsf {nEK}\), where exactly one logical operator figures in introduction rules and every basic object of the calculus can be read as a formula in the language of the ecumenical modal logic \(\mathsf {EK}\). We prove that \(\mathsf {nEK}\) is sound and complete w.r.t. the ecumenical birelational semantics and discuss fragments and extensions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48, 551–577 (2009). https://doi.org/10.1007/s00153-009-0137-3
Bull, R.: Cut elimination for propositional dynamic logic without*. Zeitschr. f. math. Logik und Grundlagen d. Math. 38, 85–100 (1992)
Blackburn, P., de Rijke, M., de Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge (2001)
Chaudhuri, K., Marin, S., Straßburger, L.: Modular focused proof systems for intuitionistic modal logics. In: FSCD 2016, no. 16, pp. 1–18 (2016)
Díaz-Caro, A., Dowek, G.: A new connective in natural deduction, and its application to quantum computing. CoRR, abs/2012.08994 (2020)
Dummett, M.: The Logical Basis of Metaphysics. Harvard University Press, Cambridge (1991)
Fitting, M.: Nested sequents for intuitionistic logics. Notre Dame J. Formal Logic 55(1), 41–61 (2014)
Goré, R., Ramanayake, R.: Labelled tree sequents, tree hypersequents and nested (deep) sequents. Adv. Modal Logic 9, 279–299 (2012)
Girard, J.-Y.: A new constructive logic: classical logic. Math. Struct. Comput. Sci. 1(3), 255–296 (1991)
Girard, J.-Y.: On the unity of logic. Ann. Pure Appl. Logic 59(3), 201–217 (1993)
Ilik, D., Lee, G., Herbelin, H.: Kripke models for classical logic. Ann. Pure Appl. Logic 161(11), 1367–1378 (2010)
Kashima, R.: Cut-free sequent calculi for some tense logics. Stud. Logica 53(1), 119–136 (1994)
Laurent, O.: Étude de la Polarisation en Logique. Ph.D. thesis, Université Aix-Marseille II (2002)
Lellmann, B.: Combining monotone and normal modal logic in nested sequents – with countermodels. In: Cerrito, S., Popescu, A. (eds.) TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 203–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29026-9_12
Liang, C., Miller, D.: A focused approach to combining logics. Ann. Pure Appl. Logic 162(9), 679–697 (2011)
Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus proof systems. Theor. Comput. Sci. 474, 98–116 (2013)
Marin, S., Pereira, L.C., Pimentel, E., Sales, E.: Ecumenical modal logic. In: Martins, M.A., Sedlár, I. (eds.) DaLí 2020. LNCS, vol. 12569, pp. 187–204. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-65840-3_12
Olarte, C., Pimentel, E., Rocha, C.: A rewriting logic approach to specification, proof-search, and meta-proofs in sequent systems. CoRR, abs/2101.03113 (2021)
Poggiolesi, F.: The method of tree-hypersequents for modal propositional logic. In: Makinson, D., Malinowski, J., Wansing, H. (eds.) Towards Mathematical Philosophy. TL, vol. 28, pp. 31–51. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-9084-4_3
Pimentel, E., Pereira, L.C., de Paiva, V.: An ecumenical notion of entailment. Synthese (2019). https://doi.org/10.1007/s11229-019-02226-5
Pereira, L.C., Rodriguez, R.O.: Normalization, soundness and completeness for the propositional fragment of Prawitz’ ecumenical system. Rev. Port. Filos. 73(3–3), 1153–1168 (2017)
Prawitz, D.: Classical versus intuitionistic logic. Why is this a Proof? Festschrift for Luiz Carlos Pereira, 27, 15–32 (2015)
Plotkin, G.D., Stirling, C.P.: A framework for intuitionistic modal logic. In: Halpern, J.Y. (ed.) 1st Conference on Theoretical Aspects of Reasoning About Knowledge. Morgan Kaufmann, Burlington (1986)
Restall, G.: Comparing Modal Sequent Systems. Draft manuscript (2006)
Sahlqvist, H.: Completeness and correspondence in first and second order semantics for modal logic. In: Kanger, S. (eds.) Proceedings of the Third Scandinavian Logic Symposium, pp. 110–143 (1975)
Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic. Ph.D. thesis, College of Science and Engineering, School of Informatics, University of Edinburgh (1994)
Straßburger, L.: Cut elimination in nested sequents for intuitionistic modal logics. In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 209–224. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37075-5_14
Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Univ. Press, Cambridge (1996)
Acknowledgements
This work was partially financed by CNPq, CAPES and by the UK’s EPSRC through research grant EP/S013008/1. We would like to thank the anonymous reviewers for their suggestions and comments.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Marin, S., Pereira, L.C., Pimentel, E., Sales, E. (2021). A Pure View of Ecumenical Modalities. In: Silva, A., Wassermann, R., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2021. Lecture Notes in Computer Science(), vol 13038. Springer, Cham. https://doi.org/10.1007/978-3-030-88853-4_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-88853-4_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88852-7
Online ISBN: 978-3-030-88853-4
eBook Packages: Computer ScienceComputer Science (R0)