Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994). https://doi.org/10.1287/moor.19.4.769
MathSciNet
CrossRef
MATH
Google Scholar
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324
CrossRef
MATH
Google Scholar
Buolamwini, J., Gebru, T.: Gender shades: Intersectional accuracy disparities in commercial gender classification. In: FAT, vol. 81, pp. 77–91. PMLR (2018)
Google Scholar
Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Second International Symposium on Programming, pp. 106–130 (1976)
Google Scholar
Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977). https://doi.org/10.1145/512950.512973
Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL, pp. 269–282 (1979). https://doi.org/10.1145/567752.567778
Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: POPL, pp. 84–96 (1978). https://doi.org/10.1145/512760.512770
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9780511801389
Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through awareness. In: ITCS, pp. 214–226. ACM (2012)
Google Scholar
European commission: proposal for a regulation laying down harmonised rules on artificial intelligence (artificial intelligence act) (2021). https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence-artificial-intelligence
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001). https://doi.org/10.1214/aos/1013203451
MathSciNet
CrossRef
MATH
Google Scholar
Galhotra, S., Brun, Y., Meliou, A.: Fairness testing: testing software for discrimination. In: FSE, pp. 498–510 (2017). https://doi.org/10.1145/3106237.3106277
Hickey, T.J., Ju, Q., van Emden, M.H.: Interval arithmetic: from principles to implementation. J. ACM 48(5), 1038–1068 (2001)
MathSciNet
CrossRef
Google Scholar
Jeannet, B., Miné, A.: APRON: a library of numerical abstract domains for static analysis. In: CAV, pp. 661–667 (2009). https://doi.org/10.1007/978-3-642-02658-4_52
Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: CAV, pp. 97–117 (2017). https://doi.org/10.1007/978-3-319-63387-9_5
Kay, M., Matuszek, C., Munson, S.A.: Unequal representation and gender stereotypes in image search results for occupations. In: CHI, pp. 3819–3828. ACM (2015)
Google Scholar
Larson, J., Mattu, S., Kirchner, L., Angwin, J.: How we analyzed the COMPAS recidivism algorithm (2016). https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural networks with symbolic propagation: towards higher precision and faster verification. In: SAS, pp. 296–319 (2019). https://doi.org/10.1007/978-3-030-32304-2_15
Manisha, P., Gujar, S.: FNNC: achieving fairness through neural networks. In: IJCAI, pp. 2277–2283 (2020)
Google Scholar
Miné, A.: Symbolic methods to enhance the precision of numerical abstract domains. In: VMCAI, pp. 348–363 (2006). https://doi.org/10.1007/11609773_23
Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML, pp. 807–814 (2010)
Google Scholar
Nielson, F., Nielson, H.R., Hankin, C.: Algorithms. In: Principles of Program Analysis, pp. 365–392. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6_6
CrossRef
MATH
Google Scholar
Obermeyer, Z., Powers, B., Vogeli, C., Mullainathan, S.: Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019)
CrossRef
Google Scholar
Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying neural networks. Proc. ACM Prog. Lang. 3(POPL), 41:1–41:30 (2019). https://doi.org/10.1145/3290354
Urban, C., Christakis, M., Wüstholz, V., Zhang, F.: Perfectly parallel fairness certification of neural networks. Proc. ACM Prog. Lang. 4(OOPSLA), 185:1–185:30 (2020). https://doi.org/10.1145/3428253
Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis of neural networks. In: NeurIPS 2018, pp. 6369–6379 (2018)
Google Scholar
Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. In: Security, pp. 1599–1614. USENIX (2018)
Google Scholar
Yurochkin, M., Bower, A., Sun, Y.: Training individually fair ml models with sensitive subspace robustness. In: ICLR (2020)
Google Scholar