Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A core calculus of dependency. In: Principles of Programming Languages (POPL), pp. 147–160 (1999). https://doi.org/10.1145/292540.292555
Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of Java bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6_12
CrossRef
Google Scholar
Albert, E., Genaim, S., Gómez-Zamalloa, M.: Heap space analysis for Java bytecode. In: International Symposium on Memory Management (ISMM), pp. 105–116 (2007). https://doi.org/10.1145/1296907.1296922
Albert, E., Genaim, S., Gómez-Zamalloa, M.: Live heap space analysis for languages with garbage collection. In: International Symposium on Memory Management (ISMM), pp. 129–138 (2009). https://doi.org/10.1145/1542431.1542450
Albert, E., Genaim, S., Masud, A.N.: More precise yet widely applicable cost analysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 38–53. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_5
CrossRef
Google Scholar
Alonso-Blas, D.E., Genaim, S.: On the limits of the classical approach to cost analysis. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 405–421. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33125-1_27
CrossRef
Google Scholar
Atkey, R.: Amortised resource analysis with separation logic. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 85–103. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6_6
CrossRef
Google Scholar
Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Alternating runtime and size complexity analysis of integer programs. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 140–155. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_10
CrossRef
Google Scholar
Cadek, P., Danninger, C., Sinn, M., Zuleger, F.: Using loop bound analysis for invariant generation. In: Formal Methods in Computer Aided Design (FMCAD), pp. 1–9 (2018). https://doi.org/10.23919/FMCAD.2018.8603005
Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds. In: Programming Language Design and Implementation (PLDI), pp. 467–478 (2015). https://doi.org/10.1145/2737924.2737955
Carbonneaux, Q., Hoffmann, J., Reps, T., Shao, Z.: Automated resource analysis with Coq proof objects. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 64–85. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_4
CrossRef
Google Scholar
Chatterjee, K., Fu, H., Goharshady, A.K., Goharshady, E.K.: Polynomial invariant generation for non-deterministic recursive programs. In: Programming Language Design and Implementation (PLDI), pp. 672–687 (2020). https://doi.org/10.1145/3385412.3385969
Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using non-linear constraint solving. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_39
CrossRef
Google Scholar
de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24
CrossRef
Google Scholar
Defense Advanced Research Projects Agency (DARPA): Space/time analysis for cybersecurity (STAC) (2019). https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
Dillig, I., Dillig, T., Li, B., McMillan, K.L.: Inductive invariant generation via abductive inference. In: Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), pp. 443–456 (2013). https://doi.org/10.1145/2509136.2509511
Guéneau, A., Charguéraud, A., Pottier, F.: A fistful of dollars: formalizing asymptotic complexity claims via deductive program verification. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 533–560. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89884-1_19
CrossRef
Google Scholar
Guéneau, A., Jourdan, J.-H., Charguéraud, A., Pottier, F.: Formal proof and analysis of an incremental cycle detection algorithm. In: Interactive Theorem Proving (ITP), vol. 141, pp. 18:1–18:20 (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.18
Gulwani, S., Zuleger, F.: The reachability-bound problem. In: Programming Language Design and Implementation (PLDI), pp. 292–304 (2010). https://doi.org/10.1145/1806596.1806630
Gulwani, S., Jain, S., Koskinen, E.: Control-flow refinement and progress invariants for bound analysis. In: Programming Language Design and Implementation (PLDI), pp. 375–385 (2009a). https://doi.org/10.1145/1542476.1542518
Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: precise and efficient static estimation of program computational complexity. In: Principles of Programming Languages (POPL), pp. 127–139 (2009). https://doi.org/10.1145/1480881.1480898
Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis. In: Principles of Programming Languages (POPL), pp. 357–370 (2011). https://doi.org/10.1145/1926385.1926427
Hoffmann, J., Das, A., Weng, S.-C.: Towards automatic resource bound analysis for OCaml. In: Principles of Programming Languages (POPL), pp. 359–373 (2017). https://doi.org/10.1145/3009837.3009842
Hrushovski, E., Ouaknine, J., Pouly, A., Worrell, J.: Polynomial invariants for affine programs. In: Logic in Computer Science (LICS), pp. 530–539 (2018). https://doi.org/10.1145/3209108.3209142
Kincaid, Z., Breck, J., Boroujeni, A.F., Reps, T.W.: Compositional recurrence analysis revisited. In: Programming Language Design and Implementation (PLDI), pp. 248–262 (2017). https://doi.org/10.1145/3062341.3062373
Kincaid, Z., Cyphert, J., Breck, J., Reps, T.W.: Non-linear reasoning for invariant synthesis. Proc. ACM Program. Lang. 2(POPL), 54:1–54:33 (2018). https://doi.org/10.1145/3158142
Kincaid, Z., Breck, J., Cyphert, J., Reps, T.W.: Closed forms for numerical loops. Proc. ACM Program. Lang. 3(POPL), 55:1–55:29 (2019). https://doi.org/10.1145/3290368
Lu, T., Černý, P., Chang, B.-Y.E., Trivedi, A.: Type-directed bounding of collections in reactive programs. In: Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp. 275–296. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11245-5_13
CrossRef
Google Scholar
Lu, T., Chang, B.-Y.E., Trivedi, A.: Selectively-amortized resource bounding (extended version) (2021). https://arxiv.org/abs/2108.08263
Lu, T., Chang, B.-Y.E., Trivedi, A.: Selectively-amortized resource bounding (artifact) (2021). https://zenodo.org/record/5140586
Manna, Z., Pnueli, A.: Completing the temporal picture. Theor. Comput. Sci. 83(1), 91–130 (1991). https://doi.org/10.1016/0304-3975(91)90041-Y
CrossRef
MATH
Google Scholar
Sharma, R., Dillig, I., Dillig, T., Aiken, A.: Simplifying loop invariant generation using splitter predicates. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 703–719. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_57
CrossRef
Google Scholar
Sinn, M., Zuleger, F., Veith, H.: A simple and scalable static analysis for bound analysis and amortized complexity analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 745–761. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_50
CrossRef
Google Scholar
Sinn, M., Zuleger, F., Veith, H.: Difference constraints: an adequate abstraction for complexity analysis of imperative programs. In: Formal Methods in Computer Aided Design (FMCAD), pp. 144–151 (2015)
Google Scholar
Sinn, M., Zuleger, F., Veith, H.: Complexity and resource bound analysis of imperative programs using difference constraints. J. Autom. Reason. 59(1), 3–45 (2017). https://doi.org/10.1007/s10817-016-9402-4
MathSciNet
CrossRef
MATH
Google Scholar
Tarjan, R.E.: Amortized computational complexity. SIAM J. Alg. Discrete Methods 6(2), 306–318 (1985)
MathSciNet
CrossRef
Google Scholar
Weiser, M.: Program slicing. IEEE Trans. Software Eng. 10(4), 352–357 (1984). https://doi.org/10.1109/TSE.1984.5010248
CrossRef
MATH
Google Scholar
Wilhelm, R., et al.: The worst-case execution-time problem - overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst. 7(3):36:1–36:53 (2008). https://doi.org/10.1145/1347375.1347389
Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative programs with the size-change abstraction. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 280–297. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23702-7_22
CrossRef
Google Scholar