Skip to main content

Part of the book series: Wireless Networks ((WN))

  • 405 Accesses

Abstract

In this chapter, a collaborative edge computing framework is presented to reduce computing service latency and improve service reliability for vehicular networks. First, a task partition and scheduling algorithm is proposed to decide the workload allocation and the execution order of tasks offloaded to edge servers. Second, an artificial intelligence based collaborative computing approach is developed to determine the task offloading, computing, and result delivery policy for vehicles. Specifically, the offloading and computing problem is formulated as a Markov decision process. A deep reinforcement learning technique, i.e., deep deterministic policy gradient, is adopted to find the optimal solution for a complex urban transportation network. Our approach minimizes the service cost, which includes computing service latency and service failure penalty, via the optimal workload assignment and server selection in collaborative computing. Simulation results show that the proposed learning-based collaborative computing approach can adapt to a highly dynamic environment and perform well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The accuracy of vehicle locations improves as the length of the zone is reduced. In consideration of the length of a car, the length of a zone is larger than 5 m.

References

  1. Peng, H., Shen, X.: Deep reinforcement learning based resource management for multi-access edge computing in vehicular networks. IEEE Trans. Netw. Sci. Eng. 7(4), 2416–2428 (2020)

    Article  MathSciNet  Google Scholar 

  2. Gao, J., Li, M., Zhao, L., Shen, X.: Contention intensity based distributed coordination for V2V safety message broadcast. IEEE Trans. Veh. Technol. 67(12), 12,288–12,301 (2018)

    Article  Google Scholar 

  3. Self Driving Safety Report: Tech. rep., Nvidia, Santa Clara, CA, USA (2018)

    Google Scholar 

  4. Zhang, K., Zhu, Y., Leng, S., He, Y., Maharjan, S., Zhang, Y.: Deep learning empowered task offloading for mobile edge computing in urban informatics. IEEE Internet Things J. 6(5), 7635–7647 (2019)

    Article  Google Scholar 

  5. Liu, J., Wan, J., Zeng, B., Wang, Q., Song, H., Qiu, M.: A scalable and quick-response software defined vehicular network assisted by mobile edge computing. IEEE Commun. Mag. 55(7), 94–100 (2017)

    Article  Google Scholar 

  6. Zhang, N., Zhang, S., Yang, P., Alhussein, O., Zhuang, W., Shen, X.: Software defined space-air-ground integrated vehicular networks: Challenges and solutions. IEEE Commun. Mag. 55(7), 101–109 (2017)

    Article  Google Scholar 

  7. Xu, J., Chen, L., Ren, S.: Online learning for offloading and autoscaling in energy harvesting mobile edge computing. IEEE Trans. Cogn. Commun. Netw. 3(3), 361–373 (2017)

    Article  Google Scholar 

  8. Zhang, J., Letaief, K.B.: Mobile edge intelligence and computing for the Internet of Vehicles. Proc. IEEE 108(2), 246–261 (2020)

    Article  Google Scholar 

  9. Lyu, F., Zhu, H., Zhou, H., Qian, L., Xu, W., Li, M., Shen, X.: MoMAC: Mobility-aware and collision-avoidance MAC for safety applications in VANETs. IEEE Trans. Veh. Technol. 67(11), 10,590–10,602 (2018)

    Article  Google Scholar 

  10. He, Y., Zhao, N., Yin, H.: Integrated networking, caching, and computing for connected vehicles: A deep reinforcement learning approach. IEEE Trans. Veh. Technol. 67(1), 44–55 (2018)

    Article  Google Scholar 

  11. Qi, Q., Wang, J., Ma, Z., Sun, H., Cao, Y., Zhang, L., Liao, J.: Knowledge-driven service offloading decision for vehicular edge computing: A deep reinforcement learning approach. IEEE Trans. Veh. Technol. 68(5), 4192–4203 (2019)

    Article  Google Scholar 

  12. Wang, X., Ning, Z., Wang, L.: Offloading in Internet of Vehicles: A fog-enabled real-time traffic management system. IEEE Trans. Ind. Inf. 14(10), 4568–4578 (2018)

    Article  Google Scholar 

  13. Sun, Y., Guo, X., Song, J., Zhou, S., Jiang, Z., Liu, X., Niu, Z.: Adaptive learning-based task offloading for vehicular edge computing systems. IEEE Trans. Veh. Technol. 68(4), 3061–3074 (2019)

    Article  Google Scholar 

  14. Ning, Z., Zhang, K., Wang, X., Obaidat, M.S., Guo, L., Hu, X., Hu, B., Guo, Y., Sadoun, B., Kwok, R.Y.K.: Joint computing and caching in 5G-envisioned Internet of Vehicles: A deep reinforcement learning-based traffic control system. IEEE Trans. Intell. Transp. Syst. 22(8), 5201–5212 (2021)

    Article  Google Scholar 

  15. Hafeez, K.A., Zhao, L., Liao, Z., Ma, B.N.: A fuzzy-logic-based cluster head selection algorithm in VANETs. In: 2012 IEEE Int. Conf. Commun. (ICC), pp. 203–207 (2012)

    Google Scholar 

  16. Taleb, T., Ksentini, A., Frangoudis, P.A.: Follow-me cloud: When cloud services follow mobile users. IEEE Trans. Cloud Comput. 7(2), 369–382 (2019)

    Article  Google Scholar 

  17. Taleb, T., Ksentini, A.: Follow me cloud: interworking federated clouds and distributed mobile networks. IEEE Netw. 27(5), 12–19 (2013)

    Article  Google Scholar 

  18. Urgaonkar, R., Wang, S., He, T., Zafer, M., Chan, K., Leung, K.: Dynamic service migration and workload scheduling in edge-clouds. Perform. Eval. 91, 205 – 228 (2015)

    Article  Google Scholar 

  19. Wang, S., Urgaonkar, R., Zafer, M., He, T., Chan, K., Leung, K.K.: Dynamic service migration in mobile edge computing based on Markov decision process. IEEE/ACM Trans. Netw. 27(3), 1272–1288 (2019)

    Article  Google Scholar 

  20. Liang, H., Zhang, X., Zhang, J., Li, Q., Zhou, S., Zhao, L.: A novel adaptive resource allocation model based on SMDP and reinforcement learning algorithm in vehicular cloud system. IEEE Trans. Veh. Technol. 68(10), 10,018–10,029 (2019)

    Article  Google Scholar 

  21. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on mobile edge computing: The communication perspective. IEEE Commun. Surv. Tuts. 19(4), 2322–2358 (2017)

    Article  Google Scholar 

  22. Cao, J., Yang, L., Cao, J.: Revisiting computation partitioning in future 5G-based edge computing environments. IEEE Internet Things J. 6(2), 2427–2438 (2019)

    Article  Google Scholar 

  23. Lin, L., Liao, X., Jin, H., Li, P.: Computation offloading toward edge computing. Proc. IEEE 107(8), 1584–1607 (2019)

    Article  Google Scholar 

  24. Zhou, J., Tian, D., Wang, Y., Sheng, Z., Duan, X., Leung, V.C.M.: Reliability-optimal cooperative communication and computing in connected vehicle systems. IEEE Trans. Mobile Comput. 19(5), 1216–1232 (2020)

    Article  Google Scholar 

  25. Xiao, Z., Dai, X., Jiang, H., Wang, D., Chen, H., Yang, L., Zeng, F.: Vehicular task offloading via heat-aware MEC cooperation using game-theoretic method. IEEE Internet Things J. 7(3), 2038–2052 (2020)

    Article  Google Scholar 

  26. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables DevOps: Migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

    Article  Google Scholar 

  27. Kuang, Z., Li, L., Gao, J., Zhao, L., Liu, A.: Partial offloading scheduling and power allocation for mobile edge computing systems. IEEE Internet Things J. 6(4), 6774–6785 (2019)

    Article  Google Scholar 

  28. Li, M., Cheng, N., Gao, J., Wang, Y., Zhao, L., Shen, X.: Energy-efficient UAV-assisted mobile edge computing: Resource allocation and trajectory optimization. IEEE Trans. Veh. Technol. 69(3), 3424–3438 (2020)

    Article  Google Scholar 

  29. Chen, J., Xu, W., Cheng, N., Wu, H., Zhang, S., Shen, X.: Reinforcement learning policy for adaptive edge caching in heterogeneous vehicular network. In: 2018 IEEE Global Commun. Conf. (GLOBECOM), pp. 1–6 (2018)

    Google Scholar 

  30. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning. Preprint (2015). arXiv:1509.02971

    Google Scholar 

  31. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105 (2012)

    Google Scholar 

  32. VISSIM. http://vision-traffic.ptvgroup.com/

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, J., Li, M., Zhuang, W. (2021). Collaborative Computing for Internet of Vehicles. In: Connectivity and Edge Computing in IoT: Customized Designs and AI-based Solutions . Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-88743-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88743-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88742-1

  • Online ISBN: 978-3-030-88743-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics